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PREFACE

This report describes the work performed under Task 3 of the DOT/FAA High
Velocity Jet Noise Source Location and Reduction Program (Contract DOT-OS-
30034). The objectives of the contract were:

* Investigation, including scaling effects, of the aerodynamic and
acoustic mechanisms of various jet noise suppressors.

* Analytical and experimental atudies of the acoustic source distri-
bution in such suppressors, including identification of source
location, nature, and strength and noise reduction potential.

* Investigation of in-flight effects on the aerodynamic and acoustic
performance of these suppressors.

These investigations are expected to lead to the preparation of a design
guide report for predicting the overall characteristics of suppressor con-
cepts, from models to full scale, static to in-flight conditions, as well as
a quantitative and qualitative prediction of the phenomena involved.

The work effort in this program was organized under the following major
Tasks, each of which is reported in a separate Final Report:

Task I - Activation of Facilities and Validation of Source Location
Techniques.

'Task 2 - Theoretical Developments and Basic Experiments.

Task 3 - Experimental Investigation of Suppression Principles.

Task 4 - Development and Evaluation of Techniques for "In flight"
Invesuga gt ion.

Task 5 - Investigation of "In flijiht" Aero-Acoustic Effects on Suppressed
Exhausts.

Task 6 - Preparation of Noise Ahato.nw.t Notzle Design Guide Report.

Task I was an investigative and survey erfort designed co identify
acoustic facilities and test methods best suited to jet noise studies.
Task 2 was a theoretical effort CetpleaenLed by theory verification experi-
meats which extended across the entire contract period of performance.

The subject of the present, Task 3, report series (FAA-RD-76-79 III
I, II. III, and IV) was formulated as a substantla part of the contract
effort to gather various test data on a wide range of high velocity jet
nozzle suppressors. These data, together with supporting theoretical advances
from Task 2, have led to a better understanding of jet noise and jet noise

&ii



suppression mechanisms, as well as to a validation of scaling methods. Task
3 helped to identify several "optimum" nozzles for simulated in-flight
testing under Task 5, and to provide a extensive, high-quality, data bank
leading to formulation of methods and techniques useful for designing jet
noise suppreseors for application in the Task 6 design guide as well as in
future studies.

Task 4 was similar to Task 1, except that it dealt with the specific
test facility requirements, measurement techniques, and analytic&l methods
necessary to evaluate the "in flight" noise characteristics of simple and
complex suppressor nozzles. This effort provided the capability to conduct
the "flight" effects test program of Task 5.

r
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LIST OF SYMBOLS

Symbols

NSH Normalized Shock Cell Noise, dB
OAPWL Overall Sound Power Level, dB

OASPL Overall Sound Pressure Level, dB

P Pressure, lbf/in.2

PNL Perceived Noise Level, PNdB

PT/Pa, PT/Po, PR Nozzle total Pressure Ratio

R, r Radius, ft

Rp Plug Radius, ft

Rr Radius Ratio, determined by the ratio of the inner radius
to the outer radius for the particular flow passage.

R/Ro, r/ro Normalized Radial Location when referring to Jet Plume
Laser Velocimeter Surveys

' SPL Sound Pressure Level, dB

T Temperature, * R

t Time, Seconds

TF Turbofan

U, V Mean Velocity, ft/sec, Jet or Flee stream

U9 ul Local Turbulent Velocity, ft/se!

VCE Variable Cycle Engine

W Utight Flow Rate, Ibm/sec

W P Chute or Spoke Width at Plug, ft

SS Chute or Spoke Width at Shroud, ft

WF ,S Flow Width at Shroud, ft

W., p Flow Width at Plug, ft

X Axial Distance, ft

Smean of measured Values of a Parameter

Xpeak Peak Axial Noise Source Location For a Given 7requeoncy. ft
Xs Ejector Axial Spacing, ft

1/3 0BSPL Ooe-Third-Octave-Band SPL, dB

0 Shock Cell Noise Pareter. 4T or bypass Ratio, Wo/Wi
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e Element Orientation Angle, Degrees

01 Angle Relative to Inlet Axis, Degrees

Wavelength, ft

0 Density, Ibm/ft 3
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Subscript
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c, i Core or Inner Stream
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I:%, ma, mix Mass-Averaged Conditions
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9 Nozzle Exit Conditions of Inner (Core) Flow
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Si Inner (Core) Stream

o Outer (Fan/Duct) Stream

* Denotes Sonic Conditions
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1.0 SUMMARY

The High Velocity Jet Noise Source Location and Reduction Program (Con-
tract DOT-OS-30034) was conceived to bring analytical and experimental know-
ledge to bear on understanding the fundamentals of jet noise for simple and
complex suppressors.

Task 3, the subject of this report, involved the experimental investi-
gation of suppression principles, including developir 3 an experimental data
base, developing a better understanding of jet noise suppression principles,
and formulating empirical methods for the acoustic design of jet noise sup-
pressors. Acoustic scaling has been experimentally denonstrated, and five
"optimum" nozzles were selected for anechoic, free-jet testing in Task 5.

Volume I - Verification of Suppression Principles and Development of
Suppression Prediction Methods - Some of the experimental studies (reported
in Volume II) involved acquisition of de.ailed, far-field, acoustic data and
of aerodynamic jet-flow-field data on several baseline and noise-abatement
nozzles. These data were analyzed and used to validate the theoretical jet
noise prediction method of Task 2 (referred to as M*G*B, designating the
authors' initials) and to develop and validate the empirical noise-prediction
method presented herein (referred to as M*S, designating the last name ini-
tials of the authors).*

The Task 2 theoretical studies conclude that four primary mechanisms in-
fluence jet noise suppression: fluid shielding, convective amplification,
turbulent mixing, and shock noise. A series of seven suppressor configura-
tions (ranging from geometrically simple to complex) were evaluated in Task 3
to establish the relative mportance of each of the four mechanisms. Typical
results of this evaluation of noise mechanisms are summarized in Figure 1-1
in terms of perceived noise level (PNL) directivity for a conical nozzle. In
general, mechanical suppressors exhibit a significant reduction in shock
noise relative to a baseline conicsl nozzle, reduce the effectiveness of
fluid shielding (increase rather than suppress noise), reduce the effective-
ness of convective emplification (reduce noise), and produce a modest reduc-
tion in turbulent mixing noise. The largest amount of shock noise reduction
correlates with the vuppressor wl:ich has the smallest characteristic dimension.
Fluid shielding decr ases because suppressors cause the mean velocity and
temperature of the jet plume to decay faster than the conical baseline. A
reduction 'i convectior Mach number (and hence in convective amplification)
occurs beciuse a suppressor plume decays very rapidly. Turbulent mixing
noise is reduced through alteration of the mixing process that results from
segmenting the exhaust jet.

fThe Task 3 empirical (M*S) method was initially intended for nozzle

geomctries which could not be modeled in the purely analytical Task 2
(M*G*B) method (a multielement nozzle with a treated ejector, for
example).

1
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Figure 1-1. Evaluation of Noise Mechanisms for a Conical Nozzle.
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Aerodynamic flow-field measurements (mean-velocity profiles) were demon-
strated to be useful in verifying the flow-field predictions which were cal-
culated by the M*G*B (theoretical) noise-prediction program. Noise source
location devices such as the Ellipsoidal Mirror (EM) were demonstrated to be
less useful than the Laser Velocimeter (LV) for the M*G*B theory verification

studies because the LV provides data which may be directly compared with
predictions made using the M*G*B program. Axial and radial mean-velocity
profiles are typical examples of such comparisons.

The empirical M*S jet noise prediction method has been developed to pre-
dict the static acoustic characteristics of multielement suppressors appli-
cable to both advanced turbojets and variable-cycle engines (which are repre-
sentative of power plants for future supersonic cruise aircraft). The effect
of external flow on the M*S jet noise prediction is discussed in the Task 6
Design Guide Report. Inputs required to use the M*S computational procedure
include: element type, element number, suppressor area ratio and radius
ratio, chute-spoke planform and cant angle plus pulg contour. The predic-
tion accuracy is estimated to be +3.3 Effective Perceived Noise Decibels
(EPNdB) at a 95% confidence level. Figure 1-2 illustrates the correlation
between measured and predicted EPNLs for all types of suppressors.

The merits of both the M*S and M*G*B computational techniques can be
stated as follows. The empirical (M*S) jet noise prediction method, based on
correlations of scale-model jet data, serves as a useful preliminary design
and prediction tool for selecting the basic nozzle type (chute, spoke, multi-
tube, etc.) and primary geometric parameters (element number, area ratio,
etc.) for a given application. It is also useful in evaluating the acoustic
performance of a given suppressor nozzle, provided the nozzle is one of the
types from which the correlation was derived. Further, the method is useful
for doing parametric studies since the computation procedure is relatively
simple and economical of both computer time and cost. The theoretical
(M*G*B) prediction method, on the other hand, is more suited to detailed de-
"sign and analysis of a suppressor nozzle. It can supply detailed information
on the jet plume flow development as well as the far-field acoustic character-
istics. It is also capable of evaluating changes in nozzle planform shape,
element placement and spacing, etc. In addition, the theoretical prediction
model is a useful diagnostic tool, capable of assessing the relative roles the
various mechanisms play in the noise suppression process, and can also serve
as a source location analysis tool.

Volume II - Parametric Testing and Source Measurements - A parametric
experimental series was conducted to provide far-field acoustic data on 47
baseline and suppressor nozzle configurations and to provide aerodynamic
nozzle performance on 18 of the configurations. The data presented in this
volume were taken for use in the current program as well as to Drovide an ex-
tensive, high-quality, data base for future studies. The impact of varying
the area ratio and velocity ratio of dual-flow, baseline nozzle configurations
was investigated, and the importance of shock noise was assessed. The impact
of varying area ratio and element number was parametrically studied for both
single and dual-flow suppressors; core plug geometry, velocity ratio, and

3
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* Flyover calculation using static data corrected to free-field conditions.

* The "Reference" level is the predicted value of noise for each nozzle,
at a specified set of thermodynamic conditions, plus an arbitrary
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weight flow ratio were evaluated for dual-flow suppressors. These studies
establish absolute static suppression levels on the basis of normalized maxi-
mum PNL, for several families of suppressor nozzles, as illustrated in Fig-
ure 1-3.

Parametric testing identified the following primary trends for single-
flow and for dual-flow suppressors during static operation:

Single Flow

Suppression increases with increasing area ratio at high jet
velocity.

* Suppression decreases with increasing area ratio at low jet
velocity.

* Soppression level is affected by element type (spoke systems
suppress slightly better than chutes).

Dual Flow

* Suppression increases with increasing area ratio.

* Suppression increases with increasing element number at
high jet velocity.

Suppression level is affected by core plug geometry (by 2
to 3 decibels (dB)].

* Suppression increases 3 to 4 dB when a treated ejector is
added to a suppressor configuration.

Selective, free-jet tests conducted on eight configurations indicate
that suppression generally decreases in flight. Typical static versus free-
jet results are shown in Table 1-1.

The aerodynamic performance test data recorded on 18 of the configurations
at both static and wind-on conditions is also included in this volume. Base
pressure measurements were taken on several of the models in order to deter-
mine base drag (which is thought to be responsible for the poor aerodynamic
performance of most mechanical.suppressors in flight). These wind tunnel
tests identified the following primary trends in aerodynamic performance:

* Performance decreases with increasing element number.

* Performance increases with increasing chute depth.

* Performance increases with increasing ratio of inner flow area
to outer flow area.
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. Performance is affected by element type (chutes perform better
than spokes because spokes have higher base drag).

The base pressure correlations provide a procedure for predicting sup-
pressor nozzle aerodynamic performance.

Table 1-1. Typical Summary of Nozzle Static and Projected
Flight Peak PNL Suppression Characteristics.

* Suppression Levels are Relative to a Conical Nozzle at Equivalent
Flight Conditions

* V = 2500 ft/sec

Suppression Level, db

Configuration Static Flight

Plug Nozzle - 0.789 Radius Ratio 1.3 3.0
Plug Nozzle - 0.85 Radius Ratio 2.3 3.7
8-Lobe Nozzle 5.6 5.6
AR = 2.5 36-Chute Nozzle 13.5 10.9
AR - 2.5 36-Chute Nozzle with Auxiliary Flow 12.5 9.4
104-Tube Nozzle 12.0 12.0

Volume Ill - Suppressor Concepts Optimization - Several studies were con-
ducted to attempt an optimizati-on of suppressor concepts. The end product of
this overall effort was to design five nozzles for static and free-jet testing
in Task 5. Trade studies of performance versus Puppresaion, aircraft inte-

gration studies, and development of a figure of merit method of analysis all
make up the activities in this "optimization" process.

Trade studies of suppression versus aerodynamic performance indicate that
a properly selected and designed mechanical suppressor can attain a delta
suppression to delta thrust coefficient ratio (APUL/ACf ) of almost 3.0
(based on static suppression and wind-on aerodynamic pehformance).

The aircraft integration study consisted of ranking nine baseline and
suppressor nozzles with respect to performance level, suppression level,
weight, impact on aircraft mission range, and Poise footprint. In general,
suppression level was found to be thve most important design variable, with
performance and weight ranking second and third, respectively.

The appropriate figure of nerit, considering all the design variables,
was found to be aircraft range. However, use of range as the figure of merit
requires that the aircraft misoion be specified, and several techniques fot

curaor•ly ranking the suppressors based solely on suppression level, perfor-
mance, and weight may also be identified. A summary of the range verstis noise

7



characteristics of typical nozzle configurations is presented in Figure 1-4.
Once a 'noise goal is specified, adding a suppressor provides a significant
range improvement over an unsuppressed system because adding a suppressor is
less costly than reducing ndise by enl'arging the -engine-to-reduce jet vel-ecitye- v.

The design of the five optimum nozzles was based on data from previous
studies, performed by government a-d industry, on the M*GAB and M*S models
discussed above and on the parametric data obtained in the acoustic and aero-
dynamic performance test series reported in Volume 11. The configurations were
designed and fabricated for open-throat, anechoic, free-jet testing in Task 5.
The configurations chosen for evaluation were: (i) a 32-chute, single-flow
nozzle; (2) a 40-shallow-chute, dual-flow nozzle; (3 and 4) a 36-chute: dual-
flow nozzle, with and without a treated ejector; and (5) a 54-element, co-
planar-mixer, plug nozzle.

Demonstration of acoustic ,caling for several suppressor configurations
was conducted to assure the adequacy of using scale-model results to project

* full-scale suppression levels. Full-scale data were obtained on several sup-
pressor configurations using J79 and J85 engines. The suppressors evaluated
were: (1) a baseline conical nozzle, (2) a 32-chute nozzle with and without
a treated ejector, (3) an 8-lobe nozzle, and (4) a 104-tube nozzle, Scale-
model data were obtained for these same configurations to allow comparison of
scale-model and full-scale results. In general, peak full-scale suppression
levels projected from scale-model data were verified by the full-scale engine
res,.its. Directivity patterns were duplicated within +2 PNdB (the largest
differences occurring with the conical nozzle configuration). Some spectral

* •anotualies were observed for select cases; however, they were not of suffici-
ent nvagnitude to invalidate the scale-model results. The conclusion re-
sulting from this study is that full-scale noise levels can be predicted from
scale-model test Vedulits using Strouhal scaling laws.

Vol•ze IV - Laser Velocimoter ime Depedent Cross Correlation Measure-
snts - TnjirnP dln t'rPd exhau$st noise diagno!4tic measure-

ments conducted using a Laser Velocimecer (LV) are reported in this volus,
Measurements were performed on a conici ' nottle and a coannular plug nozzle.

Two-point, space/timo measuremont using a rto-LV system were completed for
the conical nozzle. Mleauremenits f meaý velocity. turbulent velocity, eddy
convection speed, and turbulent length scale were made for a subsonic mbiert

jet and for a sonic heated jet. For the coannular plug nozzle, a similar
series of two-point, laser-correlation we&mtureuents were performed. In addi-
tion, cross correlations betveen the laser axial component of turbulence and
a far-field acoustic microphone were vrforved.

Volumes 1. U, l11, and IV contain the results of a comprehensive effort
to identify and integrate the th'.-vetical studiev, parametric test data,
acoustic and pt-formnce diagnostic measurements, and system studies. A
logical procedtre has evolved for coadjeting suppressor design trade-vffs.

•,8
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2.0 INTRODUCTION

The first 20 years of commercial aircraft operation with jet propulsion
have clearly demonstrated the need for effective high velocity jet noise
suppression technology in order to meet community acceptance. Aircraft
system studies show that an efficient jet noise suppression device is required
if a commercial supersonic aircraft is to be economically viable as well as
environmentally acceptable. The current state of the art of high velocity
jet noise suppression would make a supersonic transport (SST), with advanced
technology engines, meet 1969 noise rules (at best). This state of the art
"is represented by the material in References 1 through 6.

Reference 1 describes analytical and experimental investigations which
were conducted in the early 1960's. This study established a basis for

k. development of mathematical and empirical method& for the predictions of jet-
flow-field, aerodynamic characteristics and for determining the directional
characteristics of jet noise suppressors. This work was limited in the sense
that the suppressors evaluated had only modest suppression potential, and the
measurement techniques available did not allow the acquisition of high-
frequency, spectral data necessary to establish full-scale, PNL suppression
levels.

The development of commercial SST vehicles by the U.S. and by the British-
French multinational corporation in the 1960's placed extreme emphasis on the
need for effective and efficient noise suppression devices. Phase I of work,
conducted by the Boeing and General Electric companies, is summarized in
References 2 and 3. Primary emphasis was on jet noise suppressor development
through model and engine testing applicable to an afterburning turbojet
"engine. Suppressor designs were based primarily on empirical methods. Phase
II of this effort, References 4 and 5, continued the suppressor development
with a str-nger emphasis placed on the integration of analytical studies and
experimental test data. Specifically, the Boeing Company concentrated on
optimization of tube-type suppressor systems and related semiempirical pro-
diction methods. General Electric focused on the development both of chute
and of tube-type suppressor systems with primary emphasis placed on optimiza-
tion of chut"e-type suppressor nozzles.

Similar studies were conducted by the British and French in development
of thte Concorde, and typic.' results are summarized in Reference 6.

ThLe design techoology represented in References 1 through 6 is primarily

-bcmiefpiricul. The absence of general design rules based on engineering
principles led to the government's formulation of the High Velocity Jet Noise
Program, Contract DOT-OS-30034, in 1973. The purpose has been to achieve

fundament.al understanding, on a quantitative basis, of the mechanisms of jetI noise gentration and supprossion and to devt.op design methods.

T'his report presrnts the results of Task 3 of the contract. It provides
the experimental data base which was used in conjunction with the supporting

10
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theories from Task 2 to develop a better understanding of jet noise and jet

noise suppression.

The report is organized into four volumes (FAA-RD-76-79, III - I, II,
III, IV) and is presented in a format consistent with the Task 3 work plan
division of subtasks. Volume I is entitled "Verification of Suppression
Principles and Development of Suppression Prediction Methods." Volume II,
under this cover, is a-data report entitled "Parametric Testing and Source
Measurements," and Volume III is an analysis report entitled "Suppressor
Concepts Optimization." Volume IV is an analysis report entitled "Laser
Velocimeter Time Dependent Cross Correlation Measurement."

Volume I uses the data base (Volume II) and the Task 2 theoretical model
(Reference 7) to postulate the suppression mechanisms. Volume I also presents
an independent, empirical, static-jet-noise-prediction method which was developed
from engineering correlations of the test data. Volume II presents the data and
results of the parametric acoustic tests, the aerodynamic performance tests,
and the LaseroVelocimeter tests. Volume III presents the results of a trade
study of performance versus suppression, an aircraft integration study, a
"figure of merit" methodology, and a summary of the five "optimum" nozzles
selected for testing in Task 5. An acoustic-scaling investigation was con-
ducted to support the suppressor concepts optimization activities and is
presented as an Appendix to Volume III, Volume IV presents the results of
the in-jet/in-jet and in-jet/far-field cross correlation investigations.

The work reported in the present volume represents the experimental data
base obtained to accomplish the general objectives of Volume I, "Verification
of Suppression Principles and Development of Suppression Prediction Methods."
Far-field acoustic data and select flow field, source characteristics, and
aerodynamic performance data were obtained for a series of baseline nozzles

and for several families of noise-abatement nozzles. Section 3.0 presents the
Acoustic Test Program, and Section 4.0 presents the Aerodynamic Performance
Test Program.

Schematics and pertinent dimensions for each of the nozzles evaluated
for noise level are summarized in Appendix A. Appendix B contains a summary
of the acoustic data and corresponding thermodynamic conditions, The air-
attenuation model used for correcting acoustic data to standard-day conditions
is summmrized in Appendix C. Appendices D and E summarize the development of
the ellipsoidal mirror and the results of an error-analysis study. Appendix
F contains schematics of Whe models tested for aerodynamic performance and a
detailed summary of the test data.

- l!



3.0 PARAMETERIC ACOUSTIC TESTING AND SOURCE MEASUREMENTS

This study consists of the selection, design, and procurement of test

nozzles plus test and measurement efforts. Primarily, it provided the fol-
lowing data for analysis and evaluation during the Verification of Suppres-
sion Principles and Development of Suppression Prediction Methods studies
presented in Volume I and the Suppressor Concepts Optimization studies
presented in Volume I]I.

A. Detailed acoustic data were obtained on seven generic nozzles for
data/theory comparison and verification of suppression principles
and the initial development of the suppression prediction methods.
These nozzles represented baselines and several families of noise-
abatement suppressors. They started with simple, unsuppressed
single-flow nozzles (conical and annular with plug), progressed in
complexity to an unsuppressed coannular-coplanar dual-flow nozzle
and culminated in four suppressor nozzle families of complex geom-
etry i.e., lobed, multitube, multichute, and high radius-ratio
annular nozzle with multichute suppressor and plug. Measurements
of both flow-field details and limited noise-source characteristics
were obtained in addition to the far-field acoustic measurements.

B. Detailed static far-field acoustic data and select flow-field and
source-characteristic data were obtained on an additional 32 models
(models within A above, not included). Primary purpose was to
amass the parametric design data required to experimentally estab-
lish the effect of varying geometric parameters for several groups
of baseline and noise-abatement nozzles. The nozzles and para-
metric geometry variations were selected to adequately develop data
applicable to (1) advanced suppression concepts appropriate for a
future dual-flow variable cycle engine (VCE), and (2) the
more conventional multielement suppressor concepts in conjunction
with turbojet cycle applications. The data bank was used also
in developing, checking, and improving the suppression prediction/
correlation method described in Volume I.

C. Far-field acoustic data plus select flow-field and source charac-
teristic data were obtained (where appropriate) on eight baseline
and suppressor configurations within a static and simulated flight
environment, free-jet, for the following purposes:

1. To provide flight effect data to guide the designs of the five
"optimum suppressors" described in Volume 111.

2. To evaluate the impact of "flight" on shock noise generation.

4. 1; 12



D. Wind tunnel static and simulated flight aerodynamic performance
data (see Section 4.0) were obtained on a select group of baseline
and noise-abatement nozzles. A total of 18 configurations was
evaluatdd, through a joint NASA/GE effort, in the Lewis Research
Center's 6 x 8-foot wind tunnel. These aerodynamic performance data
were also used to perform the aircraft integration studies and to
guide the designs of the five optimum suppressors described in
Volume III.

The following criteria were used to influence selection of the models for
parametric testing.

A. Configurations were made representative of several types of engine
exhaust systems, i.e., turbojet, turbofan, and variable cycle (VCE)
high-speed aircraft engines.

B. Designs were selected to achieve varying levels of suppression,
anticipating the need to develop trend relationships among sup- -

pression, thrust decrement, and overall system impact. Increasing
levels of achievable suppression were anticipated in the following
nozzle configuration progression: plugs, lobed, turbojet multi-
chute, turbojet multitube, VCE multichute, duct burning turbofan
(DBTF) multichute, and VCE/DBTF multichute/ejector.

C. Design parameters were varied to influence noise generation, and
configurations were selected to shed light on critical points in
suppression theory. Among the major design parameters were radius
ratio, area ratio, degree of segmentation, element characteristic
dimensions, plug geometry, base design, treated ejector application,
and flow management (bypass ratio, velocity ratio, isothermal and
isovelocity cycle management).

D. Models were developed and tests were structured to establish the

following effects on noise generation: equivalence of chute-
to-spoke and tube-to-hole elements, dual-flow influences, flight
effects on suppression, and the importance of shock noise under
flight conditions.

Fulfilling the general scope of this study, and meeting the design
criteria and key elements listed above, required a total of 47 model con-
figurations structured around the following list of nozzle families and
design considerations:

0 Conical (convergent) baseline nozzles

a Simplistic single-flow plug nozzle (convergent, convergent-
divergent, and varying plug radius ratio)

0 Unsuppressed dual-flow (coannular-coplanar) nozzles

S13



0 Unsuppressed annular jet nozzles (with ventilated and nonventilated
base)

0 Chute area ratio, segmentation (element number), and spoke-versus-
chute studies for turbojet suppression

' Influence of flow management on chute suppressor and base design*-'
studies for VCE suppression

0 Dual-flow chute suppressors for turbofan systems

i Acoustically treated ejector applications

* Simulated flight invescigations

3.1 DESCRIPTION OF TEST MODELS

Within this study, 47 test model configurations were evaluated, 34 with
new test hardware and 13 with previously manufactured hardware from DOT/FAA
Contracts DOT-FA72 WA-2894 and FA-SS-71-13 as well as from NASA-Lewis Con-
tract NAS3-18008. (This does not include the models reported in Volume III,
Suppressor Concepts Optimization). All model hardware was of high manufac-
turing quality, normally designed to be subjected to gas stream conditions up
to, or in excess of, TT = 18000 R and PT/Po - 4.0. Most configurations used
Hastelloy X as base material and higher strength alloys for the suppressor
elements. Particular attention was addressed to producing high-quality
flowpath lines and to sealing against leakage, whether from stream-to-
stream or from stream-to-ambient environment. Many of the configurations
were designed using a modular building-block approach, with interchangeable
parts, so that consistency of physical flowpath geometry was maintained and
only geometric parameters under study were physically varied. Model hard-
ware was of fixed-point (nonvariable) design. Duplication of typical en-
gine flow lines was normally maintained for one to two equivalent flow dia-
meters upstream of the exit plane before transitioning adaptive hardware.
Abrupt changes in internal flow lines were avoided and engine obstructions
such as turbine struts were not simulated.

Turbojet simulation models ranged in size from 3.8 to 6.9-inch equiva-
lent flow diameter. Dual-flow outer nozzles ranged from 3.2 to 6.5-inch
equivalent diameter and inner nozzles from 2.9 to 4.7 inch. Each was selec-
ted to allow efficient operation of the individual acoustic facility burners

* bover a wide range of planned cycle conditions and to allow incorporation of
multielement suppressors whose characteristic frequency range of interest
falls within the 80-KHz measuring capability of facility equipment. This
allowed accomplishment of proper scaling of acoustic spectra data to engine
size.

* Table 3-1 organLzes the test models. Each configuration is 'identified
with its proper model number, todel title, flowpath line schematic-and photo-
graph. These numbers and titles will serve as consistent identification

14
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throughout the volume. Each configuration was subjected to far-field acous-
tic testing plus select laser velocimeter plume documentation and/or ellip-
soidal mirror microphone source measurement on GE-Evendale facilities accord-
ing to the following codes, as shown on the tables.

* J = JENOTS (Jet Engine Noise Outdoor Test Stand)

* JFJ = JENOTS Free Jet

* C = CL1 41 Anechoic Facility

Select configuration designs were also evaluated for aerodynamic performance
in the joint GE/NASA-Lewis test program discussed in Section 4.0. Indepen-
dent, but identical, aerodynamic hardware sets were manufactured in proper
wind tunnel size.

Figure 3-1 defines geometric parameters associated with the overall
model systems, the individual outer and inner streams, the multielement sup-
pressors, and the ejectors.

The last column of Table 3-1 identifies Figures A-1 through A-41 of
Appendix A which show in detail the physical dimensions of each model com-
ponent. The individual models are categorized and discussed in the following
paragraphs.

Models I through 13 in Table 3-1 were tested statically in the JENOTS
facility, validated within this program's Task I (Reference 8). Model I is a
4.64-inch-diameter conical nozzle which established the baseline to which
suppr-s•sion levels were referenced.

Models 2 through 5 are single-flow plug nozzles. Model 2 has a conver-
g nt-divergent internal flowpath with an expansion area ratio of 1.22 Models
3, 4, and 5 establish a series of convergent plug nozzles for which radius
ratio varies at values of 0.59, 0.789 and 0.853, respectively. The cure plug
is imintained consistent for the three models and the shroud is changed;
therefore, a true plug radius ratio effect is established.

Models 6 through 13 are versions of coannular-coplanar geometries with
variations in groups as follows:

A. Models 6, 7, and 8 maintain core geometry and vary fan shrouds to
accomplish Ao/Ai values of 2.0, 0.65, and 0.4, respectively. These
were tested at typical dual-flow cycle conditions.

B. Models 9, 10, and 12 are similar in geometry to Modelo 6, 7, and 8;
however, inner flow was regulated to rates of 10Z of the outer
flow.

C. Modelg 11 and 13 are similar in geometry to Model sets 7/10 and
8/12, respectively; however, core blank-off hardware was installed
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so that positive flow shut-off was accomplished. The system,
therefore, reverts to a single annular flow exiting over an inner
cavity of low base pressure.

Table 3-2 summarizes the comparisons which can be made through use of the
test data acquired on Models 3 through 13.

Models 14 through 38 (Table 3-1) were tested statically in the General

Electric Anechoic Chamber (Evendale, Ohio) which was also validated within

Task 1 (Reference 9). Model 14 is a 4.64-inch-diameter conical nozzle (same
geometry as Model 1) but adapted to the anechoic chamber. Models 15 through
21 are single-flow turbojet configurations with annular multielement suppres-
sors around a plug geometry and are categorized as follows:

A. Models 15, 16, and 17 maintain 36-element segmentation and vary
area ratio and radius ratio through values of 2.5/0.653, 2.0/0.716
and 1.5/0.782, respectively.

B. Model 18 maintains similar geometry to Model 16 except the chutes
are converted to zero-ventilation spokes.

C. Model 19 maintains the suppressor/plug geometry of Model 16 but
adds an acoustically treated secondary ejector.

D. Models 20 and 21 were previously designed and tested under DOT/FAA
Supersonic Transport Noise Reduction Technology Contracts DOT-
FA72WA-2894 and FA-SS-71-13, respectively, (References 3 and 4).
In this program they were adapted to the anechoic facility and
selected for test to fill identified data voids in turbojet suppres-
sion technology of generic multielement/plug systems of low radius
ratio.

Models 22 through 38 are dual-flow nozzle configurations with geometries
typic.,[ in applicatien to DBTF/VCE systems. Thiey are categorized as follows:

A. Models 22, 24, and 27 maintain 36-clement segmentation and common
ioner flowpath geometry which maintain A /Ai at 1.92, but vary
suppressor area ratio and radius ratio t•irough values of 2.5/0.653,
2.0/0.716 & 1.5/0.782, respectively, similar to the same parametric
variations on the turbojet systems of Models 15, 16, and 17 above.

B. Models 23, 24, 25 and 26 maintain 36-element segmentation and
suppressor area ratio of 2.0 but vary system AO/Ai with values of
1.92 and 3.61, plus alter inner plug positioning from an In-line
geometry (Models 23 and 25) to a retracted geometry (Models 24 and
26). IThese inner plug geometry ohanges assess the Impact of vary-
ing the inner stream flow Injection method within the dual-flow
system.
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C. Models 28 ard 29 maintain the same annular suppressor geometry of
Model 23 except the chutes are converted to zero-ventilation spokes.
This model set was designed to further aAsess the impact of inner
plug geometry changes within a dual-flow system but now with an
outer stream suppressor utilizing spokes.

D. Models 30, 31, and 32 comprise a nozzle set designed to evaluate
the impact of degree of segmentation, using 20, 30 and 40 shallow
chutes. Suppressor area ratio and radius ratio are common at 1 .75
and 0.717, respectively. Inner plug geometry is held with i =
0.779 and the plug in the retracted position. System area ratio is
constant at Ao/Ai = 1.92.

E. Models 33, 34, and 35 form a set of configurations evolved around
the basic geometry of Model 33, which comes from the NASA-Lewis
Duct Burning Turbofan Contract NAS3-18008 (Reference 10). The
model was upgraded to adapt to the anechoic test rig. Model 35 is
Model 33 converted to a zero-ventilation spoke configuration, and
Model 34 adds a new area ratio = 3.0 annular chute suppressor.
System area ratio is consistent with Ao/Ai - 0.65, and R = 0.674
inner plug is common in the retracted position.

F. Model 36 adds an acoustically treated secondary ejector to the
basic geometry of Model 24, similar on this dual-flow model set to
the turbojet set of Models 16 and 19.

G. Models 37 and 38 are acoustically treated ejector applications to
coannular, noncoplanar dual-flow plug nozzles, the basic nozzle
without ejector being previously evaluated under NASA-Lewis
Contract NAS3-19777 (Reference 11). Inner plug geometry is main-
taine' at Ri = 0.800 ahd outer shrouds are interchanged to affect
rP. and Ao/A" values of 0.853/1.159 and 0.926/0.71, respectively.

Table 3-2 summarizes the comparisons which can be made through use of
test data acquired on Models 15 through 38. The general categories of vari-
able parameters investigated are grouped as follows:

. Suppressor area ratio and radius ratio - cach varying but not
independently: applicable to turbojet Models 15, 16, and 17 and to
dual-flow system Models 22. 24, and 27.

9 Suppressor area ratio variation withi constant radius ratio, Models
27, 33, and 34, applicable to dual-flow systems.

0 3Flow management with respect to inner stream injection geometry,
asqessing impact of inner plug location and -inner plug radius ratio
with accompanying variation in system area ratio: on dual-flow
systems, relative chute suppressors (Models 23 through 26), and
relative to spoke suppressor (Models 28 and 29).
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* Flow management with respect to inner stream injection rate,
meaning inner flow nominally equal to 0, 15, and 30% of outer
flow on four select independent geometry nozzles: Models 23, 24,
28, and 31.
Degree of segmentation of suppressed annulus of dual-flow system:

Models 30, 31, and 32.

* Suppressor element type in terms of chute versus spoke on dual-
flow systems, Model sets 24/28, 23/29, and 33/35 and on turbojet.
Model set 16/18.

* Application of acoustically treated secondary ejector to suppressed
dual flow (Model set 24/36) to suppressed turbojet (Model set

16/19) and to unsuppressed annular dual flow (Model set 37/38).

The Model Series 39 through 47 in Table 3-1 was tested statically and in
the free-jet mode in the JENOTS facility to gain an early assessment of
the influence of simulated flight for several baseline and suppressor con-
figurations and to evaluate shock noise within a simulated flight environment.
The models can be categorized as follows:

* Models 39 and 40 are single-flow plug nozzles of convergent flow-
path geometry and with radius ratios of 0.789 and 0.85, respec-
tively.

* Model set 41, 42, and 43 share a 36-chute annular suppressor of
AR 2.5 and R r 0.78. Model 41 is a single-flow turbojet con-
figuration. Model 42 utilizes induced tertiary flow ducted through

hollow struts to simulate a dual-flow systeT having an inrer plug
with retracted position geometry and with Rr - 0.674 and Ao/Ai -
0.65. Model 43 closes off the induced flow passage of Model 42 and
allows the atnnular suppressed jet to dump over the abrupt step of
the inner plug geometry.

* Models 44 and 45 are 104 elliptical tube and hole configurations,
respectively, to evaluate the influence of tube base ventilation'Iwithin a wind-on environment.

• 44del 46 is an 8-lobe daisy configuration of AR - 2.1.

0 Model 47 is a 4-inch-diameter conical nozzlo with both intern•al and

external contoured flow lines.

Models 44. 46, and 47 are direct scale-muJel versions of J85-site noz-
zles tested within the Joint (;EISNEOXA* moving-frame validation test program
on the Bertin Aerotrain. IThe full-size 8-lobe nozzle and the 104-tube nozzle
were also tested on the Gates Iearjet-25C and F-106 aircraft, respectively
(Reference 12).

*! •SNiE A- Soc1d6t6Nationale D'Btude ot DO Construction de Motpurs D'Aviation.

33



3.2 DEFINITION OF TEST MATRICES

3.2.1 Acoustic Test Matrices

Of the 47 models enumerated in Table 3-1, 45 were tested for far-field
acoustic data within this study. The nozzles represent various system appli-
cations, i.e., turbojet, turbofan, duct burning turbofan, and variable cycle
engine. The systems range in complexity from simple conical and coplanar
coannular baselines, to complex dual-flow plug nozzles with multielement sup-
pressors and acoustically-treated secondary ejectors. Additionally, the pur-
poses for test varied with individual nozzles and nozzle sets to:

1) Develop a detailed data base for use in Volume 1, "Verification of
Suppression Principles and Development of Suppression Prediction
Methods."

2) Develop parametric data for systematic variations in suppressor

geometry.

3) Evaluate shock noise.

4) Establish noise dependency on flow-managtment parameters such as
Wo/Wi, Ao/Ai, inner flow injection geometry and velocity/tem-
perature control.

5) Obtain an early evaluation of simulated free-Jet environment
influence, etc.

The test matrices for the nozzles varied extensively in order to best
develop the data base required to fulfill tho specific objectives for the
particular configuration. These test matrices are discussed in this section
in term- of "nominal" value% of aerodynamic parameters; i.e., ranges of
PT/Po, TT, Vj, Vo/Vi, Wt,/Wi, etc., and in terms of their applicability to
individuial models or sets. flowever, to make the test results presented more
meaalngful, and the data acquired more useful, "specific" aerodynamic test

I values are necessary. These "as-measured" test values are tabulated in Ap-
pendix 6, one table for each nozzle configuration. The tables also list
jpertinent acoustic data (Ocaled to an engine size t f 338 in. 2 as discussed
in Section 3.3.1.5) and conventioually-used data-nt•rmalization parameters.

"The models are iroup-ed, and test matrics discussed in the following
ten sets:

Set Model No.'s Set Description

A 1 and 14 Conical iaselino - JU-OT$ and Cell 41 Anachoic Facility1 daptations

B 2 Convergent/Divergent Plug - JFAVOTS

C 3-5 .ingle-flow plug nozzle parametric radius ratio study -

FINOTS
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Set Model No.'s Set Description

D 6 and 8-13 Coannular coplanar nozzle geometries tested as dual
flow, nominal r-uter stream operation with low inner
flow, atd nominal oniter stream operation with no inner
flow - JENOTS

E 15-19 Suppresse(* turbojet configurations studying suppressor
area ratio, radius ratio, element type, and appli-
cation of acoustically treated ejector - Cell 41
Anechoic Facility

F 20 and 21 Multielement annular suppressors on turbojet/plug
system of low radius ratio - Cell 41 Anechoic Facility

G 22-32 and 36 Suppressed dual-floi' configurations studying suppressor
area ratio, radius ratio, element type, variation of
inaer stream Reometry, flow management, and application
of acoustically-treated ejector; all on systems of
moderate to high radius ratio - Cell 41 Anechoic Facility

H 33, 34 Suppressed dual-flow configurations studying suppressor

and 35 area ratio and element type on models of low system area
ratio (A /A 0.65) - Cell 41 Anechoic Facility

1 37 and 38 Acoustically-treated ejector application to coannular non-
coplanar dual-flow plug nozzle* - Cell 41 Anechoic
Facility

J 39-45 and 47 Free-jet assessment of the influence of simulated flight
on suveral b.- eioUe and suppressot configurations:
conical, plug. chute, tube, and hole - JENOTS free jet

Set A - The 4.64-inch-dia-.ter ctraital w.o:le, as adapted to JENOTS
(Nodt- 1), was tested per the matrix of Figure 3-2(a) mid as adapted to Cell
41 Anechoic• Facility (Model 141 vau xt.,tatd In•r the = trix of Figur'e 3-2(0).Lines of constant total temperature %i values of ambient, 700%, 850% O1000%,

1250-, 1300°, 1450*, and 1500w R u.re primarily used. Constant stagnation
temperature lines at 1000o aud 1!.00 R also were used on Model 14.

Set • - Model 2, convergent-divergent flowpath plug, used the mdtrti of
Figure 3-3 following (A) a typical turbojet operating line-; (b) isovelocity
lines at 1000, 1250, 1640. and 2090 ft/sec to establish noige dapdadency on

1750' and 2000' R to tsblish toise/velocity depAimdency.

Set C - 4"els 3, 4, and 5 (plug parametric radius ratio study) utilized
the test matrix of Figure 3-4. Each of the three iwdels was tested along the
simulated turbojet enine cycle line. Additionally, Model 4 (P - 0.789)
wag subjected to a more detailed parametric matrix of (a) isovelocity liues

4t 35
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at 1000, 1250, 1640, and 2090 ft/sec to establish noise dependency on jet
density/temperature, and (b) isotemperature lines of 10000, 12500, 15000,
17500 and 19000 R to establish noise/velocity dependency.

Set D - Models 6 and 8 are dual-flow coannular-coplanar configurations
of Ao/Ai = 2.0 and 0.4, respectively. They were tested using the nominal
matrix of Figure 3-5. The inner stream was maintained at specific tempera-
ture/velocity conditions while the outer stream varied to effect a range of
1.0 < Vo/Vi < 2.0. (Match symbols and 'aata points of "inner velocity", left
of figure, to those of "outer velocity", right of figure.) The test matrix
was patterned along that of the duct burning turbofan matrix of Reference 10.
Model 7 (of Ao/Ai = 0.65) was acoustically tested within the referenced program
and the available far-field data will be used for comparisons within this
report. Model 8 was further tested using the matrix of Figure 3-6 which
maintained equal inner and outer stream temperatures at an-bient and 15000 R
and varied Vo/Vi from 0 to 5.0

Models 9, 10, and 12 of Ao/Ai = 2.0, 0.65, and 0.4 respectively, used the
same physical hardware as Models 6, 7, and 8. The outer stream was operated
in the conventional high-flow velocity mode but the inner weight flow and
velocity were substantially reduced to determine the effect of low inner flow
on generated noise. Matrices for the outer stream cycle are in Figure 3-7(a)
for Model 9 and in Figure 3-7(b) for Models 10 and 12. While utilizing these
outer stream cycles, the inner stream parameters ranged within ambient < TTi,
0 R, ' 1000; 50 < Vi ft/sec < 320 and Wi < 10% of Wo.

Models 11 and 13 (of Ao/Ai = 0.65 and 0.4) again used the same physical
hardware as Models 7 and 8 but provided positive shut-off of the inner flow.
These models utilized the test matrix of Figure 3-7(b).

Set E - Models L5 through 19, single-flow turbojets, used conventional
and advanced turbojet cycle lines as per Figure 3-8. The 16-point matrix had
parameters of 1.7 < P /P 3.9, 730 < TT, R < 1760 and 1200 < ,ft/sec
< 2650. Ti,

Set F -- Models 20 and 21, conventional single-flow low radius ratio
multitube and multichute annular plug suppressors, used the test matrix of
Figure 3-9.

Set G - The suppressed dual-flow configurations, Models 22 through 32
and 36, normally used a 37 test point matrix depicted graphically in Figure
3-10 and based on the description within Table 3-3. Data points 1 through 20'1were used to evaluate noise variation with flow management. Points 1-8
(for Models 23, 24, 28, and 31, only) used no inner flow; therefore, the
outer flow exited over an abrupt step in the inner flowpath and the nozzle
essentially reverted to a single-flow system. Positive shut-off of the inner
flow was assured by using blank-off hardware within the inner stream.
Points 9 through 14 metered the inner flow to be approximately 15% of the
outer flow rate and points 15 through 20 raised that percentage to 30.
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Simulation of inverted dual flow and DBTF cycles was accomplished with
Points 21 through 29 plus 35 through 37, within a Vo/Vi range of 1.0-2.0.
Points 30 through 14 simulated Advanced Supersonic Transport/Variable Cycle
Engine (AST/VCE) cycles.

Set H - Models 33, 34,and 35 followed a matrix similar to that of Set G;
however, it was expanded to be more consistent with the test matrix of
Reference 10 (DBTF program). Additionally, the data point series which simu-
lates the 0, 15, and 30% inner flow cases was expanded from the matrix of
Set G (see Appendix B for details).

SetI - Models 37 and 38 applied an acoustically treated secondary
ejector to basic coannular/noncoplanar dual-flow plug nozzles; an abbrevi-
ated formn of the Set G matrix was utilized. Basically, parts of the in-
verted dual-flow/DBTF cycle matrix (iX'ints 22, 23, and 27-29) and the AST/
VCE cycle matrix were used (see Figure 3-i0 and Table 3-3). Several other
data points were added; see the detailed tables in Appendix B.

Set J - Configurations within this set, Models 39-45 and 47, utilized the
overall test matrix of Figure 3-11 but with data points selectively chosen
for each ndividual configuration. The overall matrix primarily followed:
(a) a typical turbojet engine operating line; (b) isovelocity lines at 1640
and 2090 ft/sec; (c) isotemperature lines at 1000', 1400', and 16900 R;
(d) simulation of the J85 and advanced curbojet operating lines to tie in
with tests performed in Task 4 (Reference 12).

Wu referriag to the Idividual model data tabulations in Appendix B,
vvAny of the data points were tested at free-stream velocities of 150 and

275 ft/sec, in addition to the normal static test. Itemization of specific
data points for each model is as follows:

0 Models 39 and 40, plug nozzles of Rr - 0.789 and 0.85, used test
points 3 through 12, primarily the turbojet operating line. Addi-
tionally, Model 40 used points 15-17, 19, and 21-24, forming
isovelocity lines at 1640 and 2090 ft/sec.

* Models 41, 42, and 43 used data points 3, 4, 6, 7, and 9-12, again
primarily the turbojet operating line.

Models 44 and 45, the 104-tube and 104-hole nozzle nozzles, used

points 9, 11-18, and 20. Model 45 ;iso used points 25-30.

. Model 47, 4.0-inLa conical nozzle, used dsat points 12 and 30
through 37, basically for shock nolse evaluation within static and
wind-on environments.

3.2.2 Laser Velocimeter Tast Matrix

Lascr velocimeter measurements of jet plumes were conducted on a total
of 21 diiferent model configurations as indicated in Table 3-1. Table 3-4

45



__ •o __ U __I. 
_

8 0

' - ,, C.
C 

I

.,.< I I .

44J



T~ble 3-4. Laser Velocimeter Test Matrixj
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summarizes these configurations as well as the aerodynamic test conditions

for each model at which LV measurements were taken. Of the 21 total models,
14 were tested at the JENOTS Facility and the remaining 7 within the Cell 41
Anechoic Facility Thirteen of the models were single flow (simulating turbo-
jet systems) and eight were dual flow. Models progressed in complexity from
simple baseline conical to unsuppressed annular plug; to annular flow over a
blunt base; to dual-flow coannular coplanar; to mechanical suppressors of the
lobe, chute/spoke, and tube/hole families. Table 3-4 also shows that seven
of the JENOTS configurations were tested under static (Vp$ - 0) as well as
free stream (VFS - 15q or 275 ft/see) environments.

3.2.3 Ellipsoidal Mirror Test Matrices

Ellipsoidal mirror measurements of source intensity dictributions in Task
3 were conducted on a total of 26 different nozzle configurations as shown in
Table 3-1. Of these, 14 configurations were tested at the Cell 41 Anechoic
Facility using the 34.654-inch-diameter deep-dish mirror, and 12 were tested
at the JENOTS Facility using the 18-inch-diameter shallow-dish mirror. The
ellipsoidal mirror test matrix was planned to allow an assessment of various
geometric and operating parameters on the jet noise source distributions of
suppressor nozzles by comparison of measured source distributions for speci-
fic data points. Results can be expressed as Strouhal Number (fDeq/Vo)
versus normalized axial distanve (X /De ) where Deq is the equivalentPeak eq

circular diameter based on nozzle area, Vo is the ileally expanded jet
velocity and X.eak is the peak source location for a given frequency, f. For
dual-flow conf guratitns Deq is calculated from total area (inner plus outer
streams) ond Vo is based on the higher veloLity of the outer stream. Compari-
sons of data can be made for the following parameters: (a) degree of segmen-
tation usling 20/30/40 shallow chutes, (b) area ratio impact on dual-flow 36-
chute suppretisors, (c) element-type comparison of spoke versus chute on 36-
element dual-flow suppressor, (dW 36-element o: dual-tlow ver.us on single-flow
turbojet, and (e) application of treated ejector on turbojet and dual-flow

systems.

Results of EA teits are discussed in Section 3.4.5, Ellipsoidal Hirror
Microphone 4easuremer ts.
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3.3 DATA ACQUISTION AND DATA REDUCTION PROCEDURES

3.3.1 Acoustic Data

As shown in Table 3-1, 21 models were tested on the General Flectric
JENOTS Scale-model acoustic test facility and 26 were tested it. the Cell 41
Anechoic Facility. The JENOTS facility is described in detail in the Task
1 final report (Reference 8) and includes the acoustic arena, burner systems,
single and coannular flow systems, aerodynamic instrumentation and data
acquisition, and acoustic data acquisition and reduction.

The sound field consists of 14 microphones arranged at 10' intervals
around a 40' arc from 300 - 1600. The microphones are elevated 16' above the
ground on specially designed "gooseneck" mounts to minimize the influence of
reflections. Nozzle centerline height is 55" above the concrete pad. Test
Model No. 2 used the single-flow with afterburner secup and all others used
the coannular flow system with the acoustically-treated plenum section.

Tho Cell 41 Anechoic Facility is described in detail in the Task 1
Supplement Report (Reference 9). Reference 9 includes the facility opera-
tional domain, the burner systems, acoustic plenum/silencer system, micro-
phone system, anechoic quality of the facility, contamination of measure-
ments, analysis of variance - overall precision of the acoustic measurements,
and general certification of the facility. Model numbers 14 through 38 of
this study were tested in this facility.

3.3.1.1 Acoustic Data Acquisition

The acoustic data acquisition systems for JENOTS and Cell 41 are shown
ihetatically in Figure 3-12. Vie JENOTS system is composed of R&K micro-

phon•/cathode follower powtered and conditioned by a B&K 2801 powdz supply,
followed by 3 ftet of line to a specially designed LO-dB, fixeO-gain pre-
"amplifier which drive 150 feet of cable terminatinK at the variable-gain
differential input amplifiers to the Sangamo Sabre IV tapt rvcordor. The
signal is recorded of tape for future playback in the data reduction room.
The microphonte type used to obtain 80-KOr data is the B6K 4135 w1thout grid
caps. The cathode follower used cost often is the W&K 2615 preamplifier
although B&K 2619 is also used, The purpose of the cathode follower is to
give n very high input impedance with amall load to the microphone and a low-
"outputt impedanco allowing the contiection of long cables between the pre-
amplifier and relatively lw impedance amplifiers in the circuit. Tih OUK
26.19 uses a field-effect transistor to give higher input impedance and lower
inherent noise tha.n Type B&K 2615. The cathode follower also supplies the
microphone with a 200-volt polarization from the pover supply.

The B&K 2801 power supply is operated in the direct-output mode to avoid
sensitivity los6. 1te frequency response of the various preamplifiers Is not
influenced by the power supply whutt used in this position. This po0er supply
does have optional 50-ohm and 200-ohm transformer outputs for use in eliminat-
ing amplifier oscillation and dampening RC resonance. The JENOTS systems,
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however, are free of such problems due to the unloading of the power supply
by the preamplifier. Three feet from the output of the power supply is a
fixed 10-dB amplifier for driving the signal to the tape recorder amplifier.
In anticipation of the low sound levels experienced at high frequency, the
circuitry was designed with a frequency response that "preemphasized" the

high-frequency signals such that it has a 3 dB increase at 40 KHz and an
additional 3 dB between 40 KHz to 80 KHz. This increases the ability to
measure low-amplitude high-frequency data. Two-condVctor shielded wires
were chosen for the 150 feet of lead from the line driver to the tape re-
corder amplifier to eliminate stray signal pickup. The cable introduces an
effective 0.0458-pf capacitance to the circuit.

The amplifier at the tape recorder was designed by GE and has a variable
gain from -10 dB to +60 dB. The amplifier delivers a 4-volt, peak-to-peak
signal to the tape recorder electronics at the normal calibration signal
level. This setting will allow a 6 dB over range without distortion. The
amplifiers are flat within 5% from 5 Hz to 100 KHz. Each amplifier has an
adjustable vernier attenuator which car. give any desired measure of attenua-
tion between 0 and 10 dB. During test c;libratLn, this vernier is usually
adjusted to make the 124-dB pistonphone celibration vignal the iall-scale
"(1.4 V/rms) input to the tApe recorder. The 0-dB steps in the tape recorder-
amdlifier then directly eorrespoýnd to 10-dB steps in OASPL from 124 dB.
The vernier ran be moved to the fixed position, in which tase, the signal
goes directly into the 10-dB-step tape recorder amplifier. The output of
each amplifier channel has a V-Data Monitoring oscilloscope for continual
inspection of all signals for any clipping or deterioration of the signal due
to excessive crest factor (peak value/rms).-

The Sangamo Sabre IV 4930 magnetic tape recorder/reproducer has IRIG
wideband and RM wideband Group I and Group II capability. In normal JEroTS
"operation all data are recorded on 1-inch in Wideband Group 11 at 30 ipap
having a flat frequency response in excess of 100 KIs when used in conjunc-
tion with the B&K 4135 microphone. The voice channel is recorded direct.

VThe JENOTS recorder was modified to record 28 tracks and to improve its
signal-to-noise dynamic r4nge from the normal 32 dB to 39 dH over all fre-
qoancies. This lower noise floor was obtained by individual channel tuning
by the Sanogamo Electric Company at the factory. Playback capability of two
data channels plus voice for on-site deta investigation ts also available.

The Call 41 Anechoic Facility data acquisition is similar to that of
JENOTS, utilizing 8BK 4135 condenser microphones without grid caps, transis-
torizd 2619 cathode followars and 2801 power supplies ; obtaining acoustic
data through the 10 t•V' 1/3-octave center frequency. The output of the power
supply is similarly connected to a line drtvqr adding 10 dB of awplifitation
to the aignal. Preempluasis to the high-frequency portion of the signal to
also usaed. Inx' order to retovo low-frequency noise, high-pass filters vith

attenuations of approximately 26 dB at 12.5 KHt decreasn to 0 dB at 200 Ut
were installed in the system.
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The tape recorder's amplifying characteristics are similar to
those of JENOTS. The prime system used for recording acoustic data is a
Sangamo Sabre IV 28-track FM recorder. The system is set up for Wideband
Group I (intermediate band double extended) at 120-ips tape speed. Operating
at 120-ips tape speed provides the improved dynamic range necessary for
obtaining the high-frequency/low-amplitude portion of the acoustic signal.
The tape recorder is set up for ±40% carrier deviation with a recording level
of 8 volts peak-to-peak. During recording, the signal is displayed on a
calibrated master oscilloscope, and signal gain is adjusted to maximum without
exceeding the 8-volt peak-to-peak level.

High-pass filters were incorporated in the acoustic data acquisition
systems to enhance high-frequency data previously lost in the tape recorder
electronic noise floor for microphones from 1100 to 1600. The microphone
signal below the 20 KHz 1/3-octave band was filtered out, and the gain was
increased to boost the signal to noise ratio. For microphones from 1100 to
160, both the filtered and unfiltered signals were recorded on tape. For
data below 20 KHz the unfiltered signal was used to calculate the sound
pressure levels while for high frequencies the filtered signal was used. The
entire jet noise spectra at a given angle was then obtained by computat.oually
merging these two spectra.

3.3.1.2 Acoustic Data Reduction

Acoustic data reduction is conlucted in the General Electric AEG Instru-
mentation and Data Room (I1R) and is similar for bnti, JENOTS and Cell 41
Anechoic systems as shown schematically in Figure .- 13. The data tapes are
played back on a Ct.C3700B tape deck with electronicci apable of reproducing
signal characteristics with the specificationa indicated for Wideband Group I
and Group I1. During acoustic tpsstrtg, a tore is iosrLed on the tape recorder
to wark Otht point on the tape where recording if the microphone signal for a
given acoustic test point is initiated. Dr~ing the data-reduction phase a
tape control unit automatically shuttles the tape, initiating an integration-
start •ignal to the antlyzer at this tone as the tape moves in its forward
motion,. This motion continues until an integration-complete signal is received.
llut-n the tape control unit switches to the next channel, the tape rewinds,
and tht process is repeated. When all channels are complete, the tape moves
tforward to the next data point on the magnetic tape.

All l/3-octave analyses drc' perEorzed on a General Radio 1921 1/3-octave
analyzer. Normal integration time is set for 32 aseconds to ensure good
integration for the low-frequancy content. The analyzer has a 1/3-octave
fi lter set for 12.5 Uz to 100 Kilz and has a rated accuracy of ±1/4 dB in each
bWnd. tiict data channel is passed through an interface to the GEPAC 30
computer where the data are corrected for the frequency response of the
microphone and the data acquisition system and corrected to standard dey
(59" F, 702 relative humidity) atmospheric attenuation conditions per methods
discussed in Section 3.3.1.3 for JENOTS and Cell 41 Anechoic Facilities. The
output of the computer is passed to a Terainet 300 console where the corrected
sound pressure Level (SPL) can be printed out on sheets for "quick look"
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analysis. For calculation of acoustic power, corrections for ground reflec-.
tions to free field, scaling to other nozzle sizes, or extrapolations to
different far-field distances, the data are sent to the Honeywell 6000
computer for processing through the full-scale data reduction (FSDR) program
where the appropriate calculations are performed. This step is accomplished
by accessing the SPL's stored on magnetic tape in the 6000 computer through a
1200-band Modem. The data printout is accomplished on a high-speed "remote"
terminal. A magnetic tape is also written for CALCOMP plotting of the data.

3.3.1.3 Air Attenuation Corrections

Acoustic testing is subject to continual changes in meteorological con-
ditions. Correspondingly, the attenuation of sound over the distance from
the jet source to the microphone will vary with the environmental fluctua-
tions of temperature and humidity due to differences in atmospheric absorp-
tion. It is common practice to attempt to account for these differences by
either (1) correcting the data for air attenuation from the measured day
values to a "standard day" of 59" F and 70% relative humidity (as has been
done for data within this study) or by (2) removing all the air attenuatiob
from the data. These corrections have been calculated using References 13
and 14. This work extended the experimental data of Reference 15 (Harris)
taken at 680 F to other temperatures using the theoretical work of Reference
16 (Knesner). Reference 15 experiments, however, were only performed to the
12.5-KHz narrowband, and its corrections are limited to the 8-KHz 1/3-octave
band. The need for corrections at higher frequencies led to an extension to
80 KiUz (Reference 17). These corrections were developed by extrapolations of
the Reference 13 and 14 (ARP866) curves, tempered by the continual experience
of comparing scaled jet spectra of nozzles ranging from I inch to 4 feet in
diameter. The Reference 17 air attenuation model was found to be best suited

to the JENOTS outdoor test data and was applied to all data taken on that
facility. The model, developed using References 13, 15, and 20, is discussed
in Appendix C and also is presented In the form of a computer program listing
which is used to generate the high frequency correction factors. Reference
10 discusses the air attenuation correction status in more detail, with
particular application to the JENOTS facility data and presents comparisons
of data corrected by use of several techniques. T% develop air attenuation
corrections for application to acoustic data taken in the more controlled
environment of the Cell 41 Aeochoic Faciltiy, an extension of Reference 14 to
the 80-K1z 1/3 octave band was programmed and used.

3.3.1.4 Data Corrections to a Free-Field Environment-JEtOTS

The ground presence at JENOTS affects the propagation of noise reflection/
absorption. The approach taken to convert the measured noise data to the
"free field" was based on theoretical analysis of the ideal case of an
infinitely hard surface, a point source of broadband noise, and a stable
homogenous mdiutm (Reference 18). The analysis was modified by a series of
tests and parametric studies conducted in Task 1 of this program (Reference
8). This involved the determinatioo of the ground impedance phase factor and
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correction for the distributed source effects of the jet. The results of

the calculations are shown in Table 3-5. These values were incorporated
into the data reduction program as standard ground reflection corrections
for all JENOTS data.

3.3.1.5 Data-Scaling Procedure

The primary function of a scaling procedure is to present test data in
a useful form for engineering evaluation. Prior to scaling, the model SPL's
are conditioned as described in Section 3.3.1.2 for frequency response of
the microphone and the data acquisition system. The JENOTS data are corrected
to "free field" per Section 3.3.1.4. These model SPL's are then corrected
to the source by removal of extra ground attenuation (per Reference 19) and
air attenuations based on the measured ambient meterological conditions,
per Section 3.3.1.3. The spectrum frequencies are shifted on a-1/3-octave
basis as a function of nozzle diameter ratio (e.g., /Afull scale/Amodel scale).
For all data within this study, a full-scale area of 338 in. 2 is used;
that of the J79 engine's fixed area exhaust nozzleused for the Acoustic
Scaling Demonstration in Volume III. The absolute level is adjusted by the
weight flow ratio (which is assumed equal to the square of the diameter
ratio). The resultant spectrum is extrapolated to the desired arc or side-
line using the inverse square law (20 log distance) and standard day atmo-
spoheric absorption as per Section 3,3.1.3. Extra ground attenuation (EGA)

is not used in the extrapolation procedure. For most configurations within
this study, "full-scale" data were developed at a 160-ft trc and a 24O0-ft
sideline.

3.3.1.6 Power Level Calculations

Tbe method used to calculate sound power levels from the corrected
SPL's is to integrate sound pressure levels assigned to strip areas based on
the input microphone radius and acoustic angles of interest. the method
used in the computer program ts detailed in Appendix B of Reierance 10. All
levels are corrected to represent full-spherical radiation.

3.3.1.7 Acoustic Data Normalization

For presentation of acoustic results, the data normalization technique
developed In Reference 11, modified for inclusion of static ideal &ross
thrust, was adopted. Reference 11 concluded that the mixed stream properties
best govern the overall noise levels (OAPL. OASPL, PWLMx.). Selection of
mixed stream velocity as the basis for data comparisons has a strouX physical
attractiveness as it expresses the noise In tera, of a velocity calculation
based on the thermodynamic conditions of both strems. It also allows
comparison of noise values at the same ideal thrust and total mass flow
which are meaningful propulsion performance parameters.
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In general, acoustic data will be presented as:

Noise value - 10 loglO [F (T o/Tsm) 1] vs. Vma, f, or e

where:

Noise value a PNL, OASPL, OAPWL, OR 1/3 OBSPL

Fs - Static ideal gross thrust (sum of inner and outer streams)

To = Ambient temperature, * R

T s- Static temperature corresponding to mass averaged velocity, Vma,
Tsm and total temperature, TTma, * R.

S- Jet density exponent (per SAE ARP 876) based on mass-averaged
velocity, VmaWiVi + WoVo

Vma - - (Mass-Averaged Jet Velocity, ft/sec)
Wi + 1O

t WiTTi + Wo°To (Mass-Averaged Total Temperature, * R)
Wi + Wo

where W and TT are the exit plane values of mass flow and total temperature
tor the inner and outer (subscript i & o) streams, respectively, and f & 8
are 1/3-octave-band center frequency and angle relative to inlet axis. In
the case of turbojet test data, the flow parameters revert to the single-
stream notation.

On occasion, for ease of data handling and presentation, the normaliza-
tion seen on graphs will be:

Noise value -N, where:

S10 l oglo 0  (To/T8 ,)0 (

The introduction of a 10,000-lb reference thrust shifts noise levels by
40 dB and allows plotting of all poaicive values of the low-level sideline
noise data.

3.3.2 Laser Velocister Data

The laser velocimeter system was developed by Ceneral Electric during
the A?/DOT Supersonic Jet Exhaust Noise Investigation (Reference 21) for
measurement of mean and ras turbulent velocities in high-temperature, high-
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velocity jets. The basic optics system is a differential Doppler, back-
scatter, single-package arrangement that has the proven feature of ruggedness
for the severe acoustic environment. The LV is a noncontacting optical
system in which the velocities of the seed particles are measured (in a
single direction) as they pass through the fringes of an interference
pattern created by two intersecting beams of coherent radiation. Figure
3-14 shows a schematic arrangement of the laser package used on this program.
The laser beams are projected from below the lens, forming an angle, a, that
keeps the major axis of the control volume ellipsoid to a minimum. The
dimensions of the control volume are 0.25 inch for the major axis and 0.020
inch for the minor axis. The range of the LV control volume from the laser
hardware was 85 inches. At this distance from the jet, a protective enclosure
is not necessary. The three steering mirrors and the beam splitter are
mounted on adjustable supports, all of the same aluminum alloy which eliminates
temperature-alignment problems. References 21, 22, and 23 contain detailed
descriptions of the system and its validation, as well as results for
measurements on scale-model nozzles under static conditions.

The setup of the laser velocimeter (and ellipsoidal mirror) at JENOTS
is shown in Figure 3-15(a) and the LV within the Cell 41 Anechoic Facility
in Figure 3-15(b). At JENOTS the IN optics package is mounted on a remotely
actuated platform on tracks parallel to the jet axis. Since the LV has a
fixed working range ot 85 inches, measurements at different points in the
jet'are accomplished by traversing the platform along three axes: horizontal.
vertical, and axial (jet axis). Travel capabilities along the three axes
are 32, 32, and 240 inches, respectively. Resolution is W1/16 inch for
each axis except for the last 208 inches of axial travel which has a resolu-
tion of !1/8 inch.

Within the anechoic facility, the track is located on the northwest

side of the chamber at a position approximately 13 feet from the nozzleI axis. The traverse span ranges from approximately 2 feet below the nozzle
discharg& plane to .ipproximately 17 feet above the nozzle discharge plane

(see Refer'nco 8).

The cart and lift have a rated load capacity of 3600 pounds. 't
rides on precision-aligned rails made of hardened steel for wear resistance
and accurate positioning. The track extends through a sliding concrete
hatch, via a hinged section of track, to the floor of the auxiliary room to
perait interchangisig the EN and LV systems as required. Traversing operation
of the cirt on the track can be accomplished from either the test chaber.
auxiliary room, or control console. Remote position indication is provided
by metans of a 10-turn potentiometer driven off the winch shaft, with readout
at the control console. The ability to record the position signal on
magnetic tape in conjunction with the acoustic data for subsequent correlatlo
is provided.

At both facilities the LV cau be operated in a traversing oode to
obtain continuous profiles of mean axial velocity, or it can be operated in
a stationary mode to construct velocity histogram for determilAtion of both
mean and rw turbulent axial velocities at discrete points.

5OW



2.159 m (85 iv.)-
Working Range m m

Ptiotomultiplier

Preamplifier ReceiV7n Lens Pair

To LV
Signal

Argon-lon LaserDosSlte

3x Beau Expander

Figure 3-14. Scbematia of Loser Volocimetor Optics Psckmgs,

59



Iq

Figure 3-15(a). Loser Velocimeter and Ellipsoidal Mirror

at J&iOTS.'Iq

Figure 3-15(b). Lasor Velocitmotor In Coll 41
Anechoic Facility.
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Traverses can be made along any of the three LV axes. In this mode of
operation, the velocity levels and positions of incoming data are contin-
uously recorded by an x-y plotter. Sampling rates on the order of at least
250 samples per inch of travel are typical for good definition. If data
rates are low or details of a profile are not clear, the traversing speed
can be reduced or portions of the traverse can be repeated one or more
times. Better definition also can be obtained by executing the traverse as
a series of "stutter" steps, with short pauses interspersed to accumulate
additional data.

Histograms are located at strategic points to verify details from the
mean velocity traverses and to obtain rms turbulence levels. The histogram
is formed from a large number of samples, typically 500 to 1000.

Seeding is by injection of aluminum oxide (A1203) powder, a nominal l-um
diameter, into the supply air to the burner and into the region of the
nozzle so as to seed the entrained air. The powder-feeder equipment used is
described in Reference 23 except that the fluidized bed colum supply air
was heated to about 2500 F to prevent powder aggregation by moisture absorp-
tion.

This LV setup is used only for exhaust plume surveys and is removed
during acoustic tests.:1 The concept of using laser velocimeter measurements for obtaining

routine mean and turbulent-velocity profiles may be described in the follow-
ing simple fashion. Two beams of monochromatic light intersect at a point
in space and set up a fringe pattern of known spacing (see Figure 3-16).
The flow is seeded with small particles which pasG through the measuring
volume; the light scattered from the particles is collected, and the laser
"signal processor measures the time it takes for the particles to pass
through each fringe. Knowing the distance and the time for each validated
particle enables the construction of the usual histogram (see Insert on
Figure 3-16). Then, by statistical techniques, the mean value (which
corresponds to the man velocity) and standard deviation (which corresponds
to the turbulent velocity) are constructed. The method of calculation used
to obtain the maan velocity arA turbulent velocity fro& laser velocimeter
measurements is described below.

A histograt is an estimate of the first-order probabilitiy density of
the amplitude of a given sa ?le. To obtain a velocity histogram, the time-
dependent laser velocileter velocity, V(t), is accumulated atd divided into
classes bounded by values of velocity increments, Vi. For each independent
sample ef velocity, a class interval is formed such that Vi ý V(t) !Vi+l.
During a measurement period, ki nuaber of velocity awmples accumiulated in
each sample class, Vi. From the total sample of measured velocity points,
the histogram is construeted as showu in figure 3-16.
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The mean velocity of the jet, Vj, obtained from the discretevelocity
samples is calculated by:

All Class
Intervals

where
Vi+1 + Vi

i ~is the value of the sampled axial velocity component
2 at the center of the class interval.

Ki is the number of velocity samples in the class interval.

N is the total number of velocity samples (Zi ki) in the
histogram.

To obtain the axial turbulent velocity, u', from the sampled data con-
tained in the histogram, the standard square root of the statistical variance
is performed. This calculation is performed using the following equation:

2

N
All Class

Intervals

Reference 10 discusses the statistical errors for LV mean and turbulent
velocity measurements. Discussions of LV turbulence spectra and in-jet
far-field cross correlation measurements are treated in Reference 8.

II 3.3.3 Ellipsoidal Mirror Data

The ellipsoidal mirror (EM) was identified in Task 1 of this program
(Reference 8) as a fast, flexible method of obtaining macroscopic noise
source location information for a jet plume. Measurements were made on
cold-flow, round, static jets to establish the basic capabilities of the
technique. Measurements taken within Task 4 of this program (Reference 12)
demonstrated the ability of the EM to detect variations of source distribu-
tions among different geometric nozzle configurations and between various
levels of free-stream velocity for heated-flow jets. Task 3 continued the
development of EM data acquisition and processing systems and further
evaluated the accuracy of the technique. Appendix D is a comprehensive
"Summazy of Ellipsoid•l Mirror Development" and treats in detail the develop-
ment and evaluation of* the EM technique. Task 3 additionally acquired
heated-flow source location data on a total of 26 base-line and suppressor
model configurations of the single (TJ) and dual-flow families. Por,the
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test work, an 18-inch shallow-dish mirror and a 34.654-inch deep-dish mirror
were used for the JENOTS and Cell 41 Anechoic Facility, respectively.
Schematics and a summary of EM characteristics are presented in Figure 3-17.

The mirror systems were calibrated for window function and gain; the window
function representing the sensitivity of the system to discriminate between
adjacent sources. Calibration results for the two systems in terms of gain
and normalized window function width are also discussed in Appendix D. The
deep-dish mirror, while not showing as good agreement with theoretical
trends, showed higher gain and slightly nat-rower window function relative to
the 18-inch shallow-dish mirror.

For each EM system, data are recorded on magnetic tape over a full
length of "outbound" traverse. The microphone signal, DC cart position,
and time code signals are all recorded using the standard acoustic data
acquisition systems of the facilities discussion in Section 3.3.1.

Data reduction is a two-phase prccedure consisting of (1) conversion of
the raw analog data to digitized spectral distributions and (2) numerical
processing (deconvolution procedure) of these results to correct for the
effects of mirror gain and diffraction window function. After deconvolution,

the distributions represent total source contributions at each axial position
(i.e., a slice of jet measurements). Studies were performed for selection
of the bes' leconvolution technique (the relaxation technique was selected)
and for tV c.'- ct of presmoothing data. These studies led to the adoption

of improveu data reduction procedures and also assessed the limitations and
sources of errors from three areas: (1) theoreticil limitations, (2) data
acquisition errors, and (3) data processing errors and limitations. The
major sources of errors encountered in processing M data are:

1. Statistical errors due to insufficient averaging time.

2. Enhancement of aubient or electronic noise, or of statistical
measurement errors, due to an ill-conditioned window function
matrix.

3. Limits on achievable resolution due to numerical instabilities in
the solution of an ill-conditioned set of equations.

4. Errors induced by uncertainty in window function measurements.

Data analysis can be interpreted as (1) axial source intensity distribu-
tions for individual 1(3-octave bands or (2) source spectra at diocrete
axial positons. The results are twst readily summarized in terms of the
axial locacation of the peak intensity for each frequency band: i.e., fD/V
versus x/D.

For 1/3-octave I;aod analyses, two pi-ocessing cycles normally are per-
formed using 1 arnd 4 second integration times for the JENOTS 18-inch mirror
and 2 and 8 second timee for the anechoic facility deep-dish mirror. The
two cycles accomoda-e high and low frequency requirements over the 500 Bz
to 40 IMz frequency ,aage used.
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Mirror cart position is gaged from brush chart reduction of cart
position signal, overall sound level, and time code.

Integral closure checks can be performed to see if the measured far-
field noise signature can be calculated from the measured source distribu-
tion. This check does not guarantee that the source measurements are
correct but establishes a confidence level in the results which can be used
to identify ranges of variables for which a given technique is definitely
not valid. Integral closure checks have shown (as a minimum) that the
deconvolved source distributions generally appear to be valid over the 1-KHz
to 20-KHz and 500-Hz to 10-KHz frequency ranges for the 18-inch shallow-dish
and the 34.654-inch deep-dish mirrors, respectively.

An error analysis of the EM technique was also performed as a part of
Task 3's continued evaluation of source measurements techniques and is
treated in detail in Appendix E. This appendix evaluates the window function
removal technique, or the way in which the acoustic sources are combined by
the mirror to yield the measurement values. The appendix describes (1)
the model for EM error analysis, (2) the technique for computing the estimate
and invertability of the A-matrix, (3) estimator variance and bias, (4)
errors- ind.ced by window function measurment uncertainty, and (5) a numerical
evalt :.ion study. The following conclusions were suggested.

1. A small elliptical mirror, such as the 18-inch mirror developed

for this program, is capable of obtaining useful data whenl

9 The source frequqncy is greater than 1000 Hz
* The source dynamic range is less than 25 dB
* The source spacing is greater than 0.5 inch
o The meas)reaent accuracy required is more than t2.5 dB

2. The window fwictio-i removal procedure is very sensitive to any
error.

3. The presence of erro a in at.alyzed data may be difficult to detect
due to high correlatton between adjacent errors. Check prurtdures
should be inchtided in the data reduction procedure to guarantee
the date quality.
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3.4 DATA ANALYSIS

The preceding sections have described the test models, test matrices,.-
facilities, and data reduction procedures utilized in performing this study.
This section will present the acoustic results in terms of noise character-
istics as a function of velocity, directivity, and spectra. The data pre-
sented will, in most cases, be normalized per the parameters discussed in Sec-
tion 3.3.1.7.

Section 3.4.1 presents the acoustic results of tests related to baseline
nozzle configurations, e.g., conical, plug, and coplanar-coannular nozzles.
Section 3.4.2 presents the acoustic results of tests designed to define the
influence of geometric and cycle variations on the suppression character-
istics of single- and dual-flow suppressor nozzles. Parameters investigated
include chute area ratio, radius ratio, inner stream flow management and
geometric variations, flow segmentation, element-type variation, and the
application of treated ejectors. Section 3.4.3 pesents the suppression
levels which occur in flight based on a series of scale-model free-jet mea-
surements. Conical, plug, chute, and tube nozzle suppression characteristics
are discussed. Sections 3.4.4 and 3.4.5 present the results of laser veloc-
imeter and ellipsoidal mirror diagnostic measurements on several baseline and
suppressor nozzles.

3.4.1 Tests Relited to Baseline Nozzle Configurations

This section presents the acoustic results of tests related to baseline
nozzle configurations. PNL, OASPL, and spectra acoustic characteristics are
established for conical, plug, and coplanar-coannular nozzles. Sections
3.4.1.1 and 3.4.1.2 establish the noise characteristics of conical and
convergent-divergent plug nozzles, The conical nozzle data are used as a
reference to establish suppression levels throughout the rest of this report.
Section 3.4.1.3 discusses the impact of plug radius ratio variation on the
various noise parameters. Section 3.4.1.4 discusses the acoustic character-
istics of a coplanar-coannular nozzle having an outer to inner flow area
ratio, Ao/AI of 2.0. Section 3.4.1.5 presents the acoustic results of
parametric tert series using coplanar-coannular nozzles of AO/Ai a 0.4, 0.65,
and 2.0. The acoustic changes caused by reducing the inner flow to zero or
less than lO of the outer stream are discussed in Section 3.4.1.6.

3.4.1.1 Baseline Conical Nozzles (Models 1. 14)

This study was conducted to establish baseline noise levels using a
conical nozzle, tested at both the JENOTS and Cell 41 Anechoic Facility.
Subsequent test data for other baseline systems (i.e., C-D plug, high radius
ratio plug. annitlar nozzles, and dual-flow coannular-coplanar nozzles) and
for mechanicall-, aupreessed systems (i.e., single- and dual-flow multielement
suppressors) ar.o ref -enced to these conical nozzle data for gaging overall
system acoustic effe, :veness and to identify dominant regions of suppres-
sion. Since both JMI )TS and the Call 41 Anechoic Facility were used at
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various stages of the Task 3 program (see Section 3.1, Table 3-1) to generate
parametric noise data, a common baseline test for each facility was con-
ducted. A 4.64-inch exit diameter conical nozzle was selected with a 2.3*
internal converging flowpath angle, as per Appendix A, Figure 1. Adapted to
the JENOTS facility, the nozzle is designated Model 1. The same nozzle
adapated to the Cell 41 Anechoic Facility is designated Model 14.

To develop a referee data base across a wide span of cycle conditions,
Models 1 and 14 were tested using the matrices of Section 3.2.1 Figure 3-2(a)
and 3-2(b), respectively. The JENOTS test matrix included constant total
temperature lines at TT = amb, 10000, 1250% 13000, 1450* and 15000 R. The
Cell 41 Anechoic Facility matrix included (a) constant total temperature
lines at 700%, 8500, 10000 and 15000 R, and (b) constant static temperature
lines at 10000 and 15000 R. The matrices were developed to span the cycle
conditions intended for subsequent suppressed nozzle tests. Additionally,
the Model 14 matrix included sufficient test points to acquire parametric
data influenced by shock cell noise. These data were used in Volume I,
Section 4.1 (Jet Noise Mechanisms) and within the subsequent studies of this
volume in comparing nonconical nozzles to determine effectiveness of shock

noise suppression. Details of the aerodynamic cycle data, along with basic
noise information for both models, are included in the Appendix B tabulations.

Acoustic test results for the conical nozzles are presented in terms of
normalized OASPL, PNL, and OAPWL versus mass-averaged velocity (Vms). The
mass-averaged velocity for a single-flow nozzle coincides with the fully
"expanded isentropic velocity. This is the format for most other baseline and
suppressed nozzle configurations. See Section 3.3.1.7 (Acoustic Data Norm-
alization) for definition of the normalization techaique. The following data
sets are included:

Figures 3-18 and 3-19 Peak OASPL and PNL
Figures 3-20 and 3-21 90 OASPL and PNLFigures 3-22 and 3-23 500 OASPL and PNL
Figure 3-24 OAPWL

Part (a) of each graph is Model 1 (JENOTS) data corrected to free-field,
and part (b) is Model 14 (Cell 41 Anechoic Facility) data. Each of the data
sets have data-fitted curves applied. These data-fitted curves are used as
the primary basis of comparing the PNL, OASPL, and OAPWL distributions with
Vma. For Figures 3-18, 3-19, and 3-24, i.e., peak OASPL, peak PUL and OAPWL,
the data-averaged curves are transferred to part (c) of the graph where they
are compared to predicted noise levels. For the 90* and 50' data sets,
Figures 3-20 through 3-23, part (c) has only predicted noise levels and
associated data-fitted curves generated using the Model 14 aero cycle data.
To predict these noise levels, the method adopted in Volume 1, Section 3.3.2
(Conical Nozzles) was utilized. The method consists of the SAE ARP 876
proposed revision (see Volume 1, Appendix C) for predicting single-stream
Jet-mixing noist modified by increasing the predicted levels by 1.0 dB to
bring it in lino• with the unapproved revision being considered in early 1978
by the SAE Jet N~oise A-21 Subcommittee. The single-stream, shock-cell noise
prediction proc.dure, Reference 24, proposed to the SAE Subcommittee, was
also adopted.
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The comparisons made in Figures 3-19 and 3-20, part (c), for peak OASPL
and PNL show very good agreement among data from the two facilities, the
data-averaged curves normally agreeing within ±0.5 dB. Relative to predicted
data curves, the maximum deviation is about 1 to 2 dB in the midvelocity
region, measured data falling above predicted.

Although the peak-noise variance for the two facilities is small, the
individual facility conical nozzle data are used for comparing other test
model results, rather than using a composite average. Similarly, when com-
paring individual data point PNL, OASPL, directivity, spectra, etc., single-
point conical nozzle data from the same facility are used.

At 900 and 50* (Figures 3-20 through 3-23), deviations between the two
baselines are more significant, particularly in the supercritical operational
regime where Model 14 cycle conditions primarily followed a shock-cell noise
evaluation matrix. For Model 14, variation of shock-cell influenced noise
with Vma, as a function of TT = 700*, 850%, 1000%, and 15000 R and Ts -
10000 R, is distinctly identifiable in the broadside (908) and forward quad-
rant (50*) data. Part (c) of Figures 3-20 through 3-23 shows predicted noise
values based on the aero cycle data of Model 14. They, too, follow similar
distinct trends associated with turbulent mixing noise at low velocity and
with shock-cell generated noise in the supercritical regime of operation.
Note that the data are all normalized with respect to temperature and the
low-velocity (turbulent mixing noise dominated) points correlated well around
the mean data line. The higher velocity supercritical pressure ratio points
(dominated by shock-cell noise, which is independent of temperature) do not
collapse around the mean line. An approximate distinction between points
above and below PT/Po - 2.0 is included on Figure 3-22. The predicted and
measured power levels are summarized on Figure 3-24.

Shock-cell noise and its importance as a noise mechanism for supersonic
choked Jets is discussed in detail in Volume 1, Section 4.1 (Jet Noise Mech-
anisms), and in Task 2 (Reference 7) Section 4.6 (Shock-Cell Noise). Accord-
ing to experimental correlations for conical nozzles. it was shown that the
OASPL should be only a function of the pressure ratio parameter as given by
B - OP-T. Model 14 90* and 50 OASPL data from Figures 3-20 and 3-22 are
replotted as a function of B in Figure 3-25, now unnormalized for tempera-
ture. The •ata for all temperature values now collapse close to a line which
varies as B. Deviation from this line occurs at low values of 8 as the
mixing noise begins to dominate the spectrum when shock strength diminishes.
As an extension of this empirical correlation to the subjective PNL basis,
Model 14 90* and 501 data from Figures 3-21 and 3-23 are replotted in Figure
3-26 versus the B parameter. They, too, show insensitivity to temperature
and collapse well around the 04 line.

To illustrate the acoustic characteristics of the conical baseline over
isovelocity and isotemperature lines of cycle operation, the following OASPL
and PNL directivity sets, plus spectra at 50, 70', 90, 110%, 130* and 150*0
are included:
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Isovelocity

Figures 3-27 and 3-28, Vj = Vma - 1600 fps; 1.6 < PT/Po <_ 3.49; 1697 >
TT, * R > 705

Figures 3-29 and 3-30, Vj Vma 2000 fps; 2.06 < PT/Po 3.96; 1736 >
TT, * R > 1004

Isotemperature

Figures 3-31 and 3-32, T T - £MB; 1.10 < PT/Po <- 3.94; 402 < Vj - Vma, fps
"< 1453

Figures 3-33 and 3-34, TT - 15000 R; 1.15 1 PT/Po < 3.67; 836 Vj - Vas
fps < 2380

The results given In Figures 3-27 through 3-30 for isovelocity data
elicit the following observations:

* The data are not normalized for TT, therefore, a wide variance in
peak noise level is seen. If the data were normalized, closer
agreement would result, similar to the Figure 3-18 and 3-19 peak
noise plots. Normalization parameters for each data point are
tabulated in Appendix B.

* For each data set, the transition is seen from the regions where
noise is predominately influenced by turbulent mixing to where
shock-cell noise dominates, For the 1600 fps data, the OASPL and
PNL directivity patterns (Figure 3-2?) follow standard turbulent-
mixing noise distributions at low pressure ratio levels, partieu-
larly for the points with PT/Po• 1.96. Above that level, the
direccivity pattarns show incrtasing influence of shock-cell noise:
the PT/Po a 2.30 points showing influence at 120" and fomiard, snd
the hi•her PT/Po datc being influenced even in the far aft sector.
Tho sp~ectra plots bear this out even.. th-rotgh 130".

For the Vj - 2000 fp data sot, slight shock-cell noise influence
is seen even ot the lowest PTIPo a 2.06 point, borne out in the 50*
spectra. As PT/Po increases. the onset of influence moves f-urther
dft until, at highest PT/Po -3.96, influence ist sen at lmst to

the 110' angular location.

Shock-c.1l noise is quite broadband from !Aid to high frequency and
clearly dominates the Jet noise spectrus to the forward quadrant,
as illustrated quantatively .t the spectra plots.

Fro* the Figure 3-31 through 3-34 plots for isotemparaturt data linMes
turthor obaervations can be uale%

0 Within the TT afb data set, for highly supercritical data points
at lov to amid-vwlity (1200 to 1450 fps), shock-call nois tot&Uy
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- dominates all but the most aft noise angles. The OASPL is nearly
omnidirectional, i.e., independent of observer angle, ei. The very
low velocity points (PT/Po < 1.85) also show fairly flat direc-
tivity patterns; however, this is characteristic of low-velocity
turbulent-mixing noise.

0 At higher TT - 15000 R, again shock-cell noise dominates the for-
ward quadrant angles at supercritical PT/Po; however, the regime of
dominance is not as d•.stinct as with the isovelocity data set.

For comparisons of baseline spectra and directivity to other models
within later studies of this volume, individual conical nozzle data points
are selected to best match the PT/Po, TT and Vj cycle of the particular
nozzle in study. By doing so, a true measure of suppressor effectiveness can
be made.

3.4.1.2 Convergent-Divergent Plug Nozzle Study (Model 2)

An investigation of the acoustic characteristics of a convergent-
divergent (C-D) internal flowpath plug nozzle was conducted in this study.
This nozzle system represents a realistic turbojet engine configuration with
a geometry significantly different than a conical nozzle or simple converging
plug nozzle. The nozzle, Model 2, is shown in Figure 3-1 and details are in
Appendix A, Figure 2. The C-D flowpath has an exit-to-throat area ratio of
1.22 and equivalent flow diameter ratio of 1.10. At the throat, the plug-to-
shroud radius ratio is 0.66, and at the exit plane it is 0.55. The plug has
a 30 half-angle within the area of the straight cylindrical shroud, followed
by a 10* half angle flowpath extending to the contoured plug end.

Acoustic testing was performed at JENOTS and followed the matrix of
Section 3.2.1, Figure 3-3, including the following:

0 Turbojet engine typical operating line

* Isotemperature lines at TT - 1000', 1250%, 1500, 1750', 2000, and
2250o R

0 Isovelocity lines at Vj w a 1000, 1250, 1640, and 2090 ft/sec.

The isovelocity lines were established primarily to derive the temper-
ature dependency of noise for this type of nozzle, similar to that estab-
lished for a conical nozzle by Hoch, et.al. (Reference 25).

Acoustic test results on a normalized overall basis versus jet velocity
are presented for the following:

Figure 3-35 Peak OASPL & PNL
Figure 3-36 90* OASPL & PNL
Figure 3-37 500 OASPL & PNL " .

Figure 3-38 OAPWL
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The above data are presented on a 2128-foot sideline rather than at the
standard of 2400-foot sideline, adopted for this report because initial data
reduction for this nozzle was at 2128-feet. The conical nozzle data-fitted
curves are, therefore, also corrected to the 2128-foot sideline.

Acoustic data trends are observed to be quite dissimilar to those of
other model series in that:

a. Collapse of the data with use of the temperature (density) norm-
alization is not observed even at peak noise angles suggesting
a strong influence of other than turbulent mixing noise.

b. Noise levels at low velocity (1000 ft/sec) vary as much or more
than at high velocity (2090 ft/sec), exactly opposite to the trend
of the Section 3.4.1.1 Baseline Conical Nozzles.

c. Normalized noise levels at a particular jet velocity show trends
with temperature. Constant temperature lines can be derived, as
seen in each data plot,

d. Most noise levels are above the referee conical baseline, at all
velocity values, also indicative of other than turbulent mixing
noise influence.

Operation above supercritical pressure ratio begins to introduce shock-
cell associated noise in puretone and broadband form in conical nozzle data.
The resulting noise levels do nft correlate with conventional temperature
scaling methods because shock cell noise is nontemperature dependent. Oper-
ation of a conical nozzle near and below choking pressure ratio generates
turbulent mixing noise, which, when normalized with temperature (density).
collapses well around a single mean curve.

The flowpath design and operational characteristics must be examined
more closely to understaud the noise levels of the C-D nozzle. Asoming a
one-dimensional flow approximation, flow conditions within and aft of the C-D
system dre established as a function of nozzle area ratio (Aexit/Athrost or
A91A8) and nozzle pressuro ratio, PT/Po. For Model 2's C-D flowpath, the
nozzle should be shock-free at M - 1.55 or PT/Po - 3.90. Subsonic Hach
numbor and P'./Po corresponding to this A9/A8 are 0.58 and 1.24, respectively.

Therefore, the following flow patterns ar" anticipated for the range of
nozzle pressure ratios evaluated:

(a) for PT/PO 4 1.24, the flow throughout the nozzle is subsonic, the
velocity avd Mach number are maximu at the throat plane.

(b) for it/Io * 1.24, the flow is accelerated to M4 1 at the throat

plane and subsequently decays to a subsonk velocity at the exit
plane.
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(c) For 1.24 < PT/Po < 2.61, the flow is accelerated to M = 1 at the
throat and to supersonic conditions within the divergent section.
A normal shock wave is formed within the divergent part of the

enozglr.aees& which tal-Tressure- and-veladty-of- thdP flo-de-.
creases. The flow at the exit from the nozzle is subsonic.

(d) At PT/Po = 2.61, the location of the normal shock wave is at the
exit plane of the divergent section. This pressure ratio is calcu-
lated from the expression:

y (M2 -- 1

Sy+ exit y+1

where Mexit corresponds to supersonic isentropic expansion from
M = 1 at A8 to M = Mexit at A9 .

(e) For 2.54 < PT/Po < 3.90, the flow attains M I 1 at the throat and
accelerates to supersonic in the divergent section. As the flow
leaves the nozzle supersonically, shock patterns (oblique and
normal) form outside the nozzle, across which the flow is decel-
erated.

I (f) At PT/Po = 3.90, the flow attains M - 1 at the throat and is accel-
erated isentropically to supersonic velocity, attaining M - 1.54
at the exit plane. The flow ideally is without shock structure
throughout.

(g) Above PT/P = 3.90, the flow cat, again become shock infested.

The following observations aid in understanding the generated noise
patterns:

(a) Only (b) and (f) of the above flow patterns (at PT/Po " 1.24 and
3.90) expand the flow isentropically, corresponding to the normal
flow pattern associated with a convergent nozzle for which the
isentropic fully expanded velocity is calculated as Vma. This is
the main parameter again~t which noise is plotted for comparison to
the conical nozzle data. Flow stream characteristics of a C-D
system may not lend to correlation using the isentropic velocity
calculation based on nozzle PT/Po and TT. Operation between P'J/Po
of 1.24 tn 2.61 results in an internal normal shock which reduces
velocity, the loss dependent t. shock strength. The exit plane
velocity will not corrcspond to the isentropic expansion velocity
calculation.

(b) Since a v1hock structure can be generated within the nozzle diverg-
ing section for 1.24 < PT/Po 0 2.61, low velocity noise can be
influonced by shock-cell formations. In contrast, conical nozzle
shock-cell noise influence is not observed until PT/Po > 1.86.
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(c) For the PT/Po 1.24 to 2.61 range of operation, dominance of
either turbulent mixing noise or shock-associated noise depends on
the competltive influence of: (a) increased shock-strength asso-
ciated with higher operating pressure ratio and, (b) relative
change in exit velocity associated with the increase in PT/Po,
tempered by greater loss across the stronger internal normal shock.

(d) Shock-associated noise generated internally may not exhibit the
same characteristics as externally generated shock-cell noise for
convergent nozzles.

(e) Other sources of noise may exist, i.e., internally generated noise
associated with an interaction of the shock structure and flow
disturbances such as those associated with turbulence of combus-
tion, upstream support strut wakes, or from nozzle wall boutndary
layers. This interaction may also significantly boost jet mixing
noise levels.

(f) For operation in the 2.61 < PT/Po < 3.90 regime, where external
shock structure is expected to be present, the more omnidirectional
characteristic of shock-cell noise associated with convergent flow
nozzles should be present and shock-cell noise will compete with
turbulent mixing noise for predominance.

Changes in noise characteristics are expected to be pressure ratio de-i pendent, of signifLant magnitude, and broadband in content, based on the
above considerations.

As a preiiminary attempt at correlation of peak noise, 120-foot arc
peak OASPL and 2128-foot sideline peak OASPL are plotted versus nozzle PT/Po
at the isovelocity lines of 1000, 1250, 1640 and 2090 ft/sec in Figure 3-39.
Pressure ratio ranges corresponding to anticipated flow regimes are indi-
cated. Additionally, Figure 3-40 presents 120-foot polar OASPL distributions
for the four isovelocity lines and Figure 3-41 contains 1/3 OBSPL spectra at
1500 relative to the inlet (normally the peak noise angle for each of the

four velocity points).

The following observations are noted based on a review of the above data
figures, consistent with the previous observations (a) through (f):

0 For PT/Po ' 1.24, peak OASPL levels vary within 1 dB (at I000 Et/
sec) on a nonnormalized basis. k•hen normalized for TT, the vari-
ance drops to 0.3 dB; the closer correlation anticipated !or tur-
bulent mixing noise.

* For pressure ratio range of operation where an internal shock is
expected,, i.e., 1.24 < P/ c 2.61, figure 3-39, correlation of
Peak OASPL with PT/Po, indicates a changing trend with velocity
change. At 1000 and 1250 ft/sec noise decreases as PT/Po in-

j creases ar 1640 ft/sec the level remains near constant, and at 2090
ft/seec the peak OASPL increases. This may be in line with the
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previous observation (c). The OASPL and 1/3 OBSPL data of Figures
3-40 and 3-41, within this range of operation, indicate smooth
transition in levels at all angles. Spectrum changes are mostly
broadband in content. I

. For the pressure ratio range of operation where an external shock
structure is anticipated, 2.61 < PT/Po < 3.90, the more omnidirec-
tional characteristic associated with conical nozzle shock-cell
noise persists [previous observation (f)], and competition for
dominance of either turbulent mixing or shock noise is more pro-
nounced. At 1000 ft/sec all points are below PT/Po = 2.54 and no
external shock structure is expected; therefore, directivity and
spectra changes are all uniform. At 1250 ft/sec, for the PT/Po
2.79 point, inlet and broadside noise levels are raised substan-
tially while aft-to-peak levels increase moderately. Spectra at
1500 show noise increases to be very broadband from • 160 Hz
through 10KHz. At 1640 ft/sec, where maximum PT/Po - 2.41 (< 2.54
where shock sits at the exit plane) OASPL directivity shows no
abrupt rise in the forward quadrant; however, aft angle 1500 spec-
tra still shows a fairly broadband increase in noise levels, indi-
cating possibility of strong aft directed shock noise. At 2090
ft/sec, the PT/Po - 2.48 point maintains low forward quadrant noise
whereas the PT/Po - 3.25 and 3.91 points increase forward quadrant
and broadsiie OASPL proportionately with PT/Po change. Spectra
changes at L50* are again broadband and consistent with PT/Po
changes.

A jet density correlation was derived using the isovelocity data lines
at V = 1000, 1250, 1640 and 2090 ft/sec obtained through systematic vari-
ationof PT/Po and TT. Nonnormalized OAPWL and peak OASPL values are plotted
versus 10 logl0 (PJ/Piaa) in Figure 3-42. Straight lines are fitted through
each velocity set by least squares curve fit. The resulting line slopes
yield the density exponent (w) for the correlation of Jet noise dependence on
density. Each line of data, therefore, establishes the value of w for that
particular velocity and these w values versus loglo Vma/a are also plotted in
Figure 3-42 for both OAPWL and peak OASPL. The figures also show comparison
to the conical nozzle w dependency established by Hoch, et.al. (Reference
25). Differences are quite substantial and again illustrate the distinctly
different noise characteristics of a C-Df nozzle (Model 2) system.

3.4.1.3 Plug Nozzle Radius Ratio Study (Models 3, 4, and 5)

The plug nozzle may be thought of as a basic building block. In its
simplest form, it is the basic propulsion nozzle geometry normally used for
increasing aerodynamic efficiency. In its more complex form, it is the base
structure around which multielement annular suppressors are incorporated.
Through use of it translating cylindrical shroud, it reverts to geometry
similar to that of the convergent-divergent system of the previous section.
The C-D flowpath is v.ssential for proper flow expansion guidance in cruise
flight mode, necessary to optimize aerodynamic performance.
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The far-field acoustic characteristics of- three different annular plug
nozzles were measured within this study to establish noise level variation as
a function of plug geometry, primarily plug radius ratio. Additionally,
information was obtained for use in Task 2, Section 4.6.7, "Experimental
Evaluation of Annular Plug Nozzle Shock Cell Noise Characteristics," and
Section 4.7.8, "Data Theory Comparisons." Temperature (density) dependence
information was also obtained to establish noise w dependency similar to that
done by Hoch, et al. (Reference 25) for conical nozzles and to that of the
previous section for the C-D plug (Model 2). This noise data allows doc-
umentation of the dependency of the plug system in a general manner similar
to the conical nozzle.

The three configurations tested are shown in Figure 3-43 with details in
Appendix A, Figures 3, 4, and 5. The models maintain the 100 half-angle core
plug of 2.40" radius over the plug peak. The plug flowpath is contoured to
simulate conventional engine flowlines. Interchangeable converging shrouds
of Rs = 4.071, 3.041 and 2.815" are used to effect plug-to-shroud radius
ratios (Rr) of 0.59, 0.789 and 0.853 for Models 3, 4, and 5, respectively.

The models were tested at JENOTS with the far-field acoustic matrix of
Section 3.2.1, Figure 3-4. Each used the simulated turbojet engine cycle
line, and Model 4, of representative Rr - 0.789, was selected for a more
detailed parametric test matrix consisting of:

0 Isovelocity lines at 1000, 1250, 1640, and 2090 ft/sec, similar to
that of Model 2 of the previous section to establish noise depen-

* dency on jet density/temperature.

* Lsotemperature lines of 1000, 1250%, 15000, 1750', and 19000 R, to
establish noise/velocity dependency.

Previous suppression levels associated with plug nozzles were low to
moderate (I to 3 APNL) in level, primarily associated with plugs of low
radius ratio. The current plug-baseline systems were developed to evaluate
several design principles. An increase in plug radius ratio for a fixed area
nozzle pushes the flow to a smaller annulus, further removed from the nozzle
centerline and should, therefore, increase peripheral mixing area. Smaller
annulus slit height (higher radius ratio) is associated with reduction in
shock-cell noise. The smaller annulus height, relative to a fixed plug1*: length, enhances the possibility for greater physical shielding of high-
frequency noise.

Data results for the parametric radius ratio study, along the simulated
V turbojet engine cycle line, are presented as follows; each scaled and nor-

malized per Section 3.3.1.7 then plotted versus Vma with A suppression plots
included as appropriate:

Figure 3-44 and 3-45 Peak OASPL and PNI
Figure 3-46 and 3-47 90O'OASPL and PNL
Figure 3-48 500 OASPL and PNL
Figure 3-49 OAPWL
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Figures 3-44 through 3-47 show definite trends of suppression increase
with higher radius ratio at peak and 90* for both OASPL and PNL. Maximum
suppressions of 6.6 APNL/6.8 AOASPL are seen at peak and 5.7 APNL/5.1 AOASPL;
at .90 attained by the Rr = 0.853 plug (Model 5). Velocity region of max. sup-
presslon occurs at 1200 to 1500 ft/sec, considerably different than the
higher velocity range for suppressors. Peak noise level suppression drops
off considerably at high velocity; however, 900 suppression is fairly con-
stant across the test velocity range. Since the 900 suppression levels are
fairly well carried over to peak angles in the aft quadrant for low velocity,
it is an indicator that a reduction in turbulent mixing noise is the primary
suppression mechanism. A total variance of approximately 2.0 Apeak OASPL and
3 Apeak PNL is senn from the Rr = 0.59 to 0.853 excursion, maximum change
occurring between the 0.789 (Model 4) and 0.853 (Model 5) plugs.

Data collapse quite consistently around the mean data-fitted curves,
except for several points above the mean lines which possibly contain some
shock-cell noise influence. At 50%, the PNL and OASPL levels are not as
conducive to curve fitting, again indicating the presence of other than
turbulent-mixing noise. Section 4.6.7 of Task 2 addresses shock-cell noise
characteristics and correlations for these three annular plug nozzles. It
has indicatEd that the annular jet formed between the nozzle shroud and plug
centerbody may produce significantly different shock-cell patterns than an
equivalent-flow-area conical nozzle when operating at underexpanded pressure
ratios. The presence of the plug or centerbody provides a guided-expansion

surface for the supersonic expansion/compression process. Additionally, the
turbulent boundary layer on the plug surface may interact with the impinging
shocks, modifying their characteristics.

Measured OASPL values for all supercritical nozzle pressure ratios cor-
relate well at 01 - 30*and 50* (where shock-cell noise is expected to dom-
inate) when plotted versus 8 following typical conical nozzle 8B dependency.
A method of normalizing shock cell noise (Nsh) was formulated as:

N OASPL-40 logl 0 (0)-20 lOgl0 (D /r ) Task 2 Report, Equation 263
(Reference 7)

Data correlated very well at 30*, 50* and 70" when normalized in this
'manner and plotted versus 8. A consistent trend of lower shock-cell noise
"(frum 3 to 5 dB below conical) is observed as radius ratio is increased' Aa
met-ttioned previously, this can be associated with decreasing annulus slit

•; height as Rr increases ad,d subsequently, reduces the potential-for strong
Sshock structure developtuint.

• ~Comparisons of 500 nonuormfalized spectra at PT/Po a 2.65, 3.28. and 3.55

were also done in the Task 2, Section 4.6.7, and shoved that conical nozzle
spectra shape is not maintained for a plug nozzle. A tendency to form two
peaks was seen, their separation increasing with increasing radius ratio. .•
The spectra were also more broadband in character than equivalent conical
nozzle spectra.
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"For a more detailed comparison of PNL, OASPL and 1/3 OBSPL character-
istics for the three radius ratio models tested along the simulated turbojet
operating cycle line, the following are included:
/ * Figures 3-50 and 3-51 PT/Po - 2.07, TT - 985* R, Vma - 1490 ft/sec

* Figures 3-52 and 3-53 PT/Po - 2.65, TT - 12950 R, Vma - 1950 ft/sec

* Figures 3-54 and 3-55 PT/Po - 3.27, TT - 1535* R, V m 2350 ft/secS~ma

Observations from the data plots include:

* Directivity patterns are quite consistent among the three radius
ratio models with a general lowering of levels across all angles as
Rr increases.

0 Broadside and forward quadrant noise levels, even at high PT/Po,
are quite low compared to shock-cell infested conical nozzle
patterns.

. A tendency is observed toward double-humped spectra, particularly
for low velocity data.

* I Some shock-cell tones are present in the forward quadrant angle's

spectra and occasionally at 900 to 1100.

* Changes .n spectra levels from model to model occur fairly well
broadband, particularly at low V . At high velocity, spectra are
quite similar in level and shape, bearing out the little change
seen in PNL and QASPL at high Vma.

Jet-density correlation, using data acquired at V., - 1000, 1250, 1640
and 2090 ft/sec on Model 4, was done similar to the procedure described in the
previous section for the C-D plug (Model 2). Nonnormalized OAPWL and peak OASPL
are plotted versus 10 loglO (Po/oisa) in Figure 3-56. Values of W are tabulated
and plotted versus l OglO V ao/a. Curves are shown through the data points to
compare to the conical nozzre density dependence established by Hoch, et al.
(Reference 25). Minor variations relative to the conical nozzle are seen,
'indicating that the choice of the conical nozzle curve for data correlation
is sound.

3.4.1.4 Baseline Dual Flow Study

An AR - 2.0 coplanar-coannular nozzle, Model 6, was tested on JENOTS
to establish the acoustic characteristics of a typical dual flow coplanar-
"coannular nozzle. Appendix A, Figure A-6 should be referred to for detailed
geometric characteristics. The acoustic test matrix included cold inner and
outer flow streams having a velocity ratio range of Vo/Vi - 0 to 5.0, plus
hot tnner and outer streams (tl50O" R) over a Vo/Vi - 0 to 2.5. The test
matrix is described in Section 3.2.1 and the test conditions are documented
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on Table 6 of Appendix B. Conventional bypass as well as inverted flow cycl*
conditions were evaluated. A conventional bypass cycle is defined as when
Vo/Vi < 1.0. An inverted flow cycle is when Vo/Vi >1.0.

These data were used to support the theory/data comparisons presented in
Section 4.7.8 of the Task 2 final report, Reference 7 and in Section 4.3.4
of Volume I of this report.

The PNL and OASPL directivity characteristics for velocity ratios
(Vo/Vi) ranging from 0.17 to 1.27 are presented on Figure 3-57. The inner
stream velocity was held constant at 1000 ft/sec. The data have been nor-
malized as discussed in Section 3.3.1.7. The minimum noise level is observed
to occur at a velocity ratio of 0.5 to 0.6. This is similar to the results
presented in References 26, 27, and 28. Typical spectra comparisons at
angles of 500, 900 and 140* are presented on Figure 3-58. The spectra com-
parisons indicate that the level of noise reduction at a velocity ratio of
0.5 is relatively frequency independent in the aft quadrant and frequency
dependent in the forward quadrant. The apparent deviation of the Vo/Vi -
1.27 data in the forward quadrant is due to the presence of shock noise, as
demonstrated by the shape of the 600 spectra.

A similar data set was obtained holding the outer velocity, Vo, constant
at 1000 ft/sec and varying the inner velocity, Vi, resulting in 0.63
< Vo/V < 2.66. Also, the stagnation temperature of the inner stream was
maintained at 1290* R. In contrast to the previous case, the minimum noise
did not occur in the velocity ratio region of 0.5 to 0.6, but was observed to
decrease as velocity ratio increased. Normalized PNL and OASPL directivity
characteristics are presented on Figure-3-59 to support this observation. A
17 dB reduction in OASPL in the aft quadrant is observed as Vo/Vi increases
from 0.63 to 2.86. Spectra are presented on Figure 3-60 to illustrate that
the noise reduction with increasing velocity ratio primarily occurs in the
low to midfrequency range.

The data are examined further by normalizing and comparing the data
points for both sets on the basis of mixed flow velocity as defined in Sec-
tion 3.3.1.7. This parameter was not effective in collapsing these two data
sets into a unified line in the low velocity regime.

The nozzle was also evaluated at several conditions where both mass
average velocity and velocity ratio were held constant. Typical directivity
examples are presented for inverted flow cycles of Vo/Vi - 1.25 and 2.0 on
Figures 3-61 and 3-62, respectively. The normalization parameter generally
causes the collapse of the directivity pattern at a given mass average veloc-
ity while velocity ratio is held constant. This observation is also correct
for the velocity ratio of 2.0 as illustrated by Figure 3-62. Typical spectra
comparisons are presented on Figures 3-63(a) and (b) to verify the observa-
tions based on the directivity characteristics. In general, the spectra at
the various angles indicate that this normalization parameter is effective in
correlating the test data.
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3.4.1.5 Dual-Flow Parametric Study (Models 6, 7, and 8)

Test data similar to that described in the previous section were obtained
on AR 0.65 (Model 7) and 0.4 (Model 8) coplanar-coannular nozzles. In con-
junction with the previous results, they will be used to evaluate the impact
of nozzle area ratio on suppression chayacteristics for inverted-flow cycles.

The geometric characteristics of these nozzles are defined on Figures
A-7 and A-8 in Appendix A. The thermodynamic conditions are summarized on
Tables 7 and 8 in Appendix B.

Normalized PNL levels for the three nozzles are on Figure 3-64, along
with conical nozzle data; presented as a reference for establishing suppres-
sion level. No consistent trend of suppression with area ratio is observed.
The maximum suppression level obtained is 4 dB and occurs at both velocity
ratios of 1.5 and 2.0. Peak OASPL comparisons on Figure 3-65 exhibit similar
trends, however, suppression levels up to 5 dB are ubserved. Normalized
OASPL and PNL characteristics at 90* are summarized on Figure 3-66. Trends
are similar to those observed at the peak noise angle with the exception that
the absolute level of suppression has decreased. Comparisons at 500 are
presented on Figure 3-67 and show suppression level to increase as velocity
ratio decreases. The variation of noise level with nozzle area ratio is a
function of velocity ratio.

Directivity and spectra comparisons are presented on Figures 3-68 through
3-73. PNL and OASPL directivity characteristics are evaluated for velocity
ratios of 1.0, 1.5 and 2.0. The inner velocity, is held constant at 1000
ft/sec and the data are normalized for thrust and temperature. Comparisons
at a velocity ratio of 1.0, on Figure 3-68, show no significant change in PNL
or OASPL characteristics as area ratio varies, Similarly at velocity ratios
of 1.5 and 2.0, on Figures 3-69 and 3-70, a reduction of 3 to 9 dB occurs as
area ratio decreases from 2.0to 0.4. The variation in noise level is a
function of area ratio, velocity ratio, and acoustic angle; the maximum
variation occurring at a velocity ratio of 2.0. Noise level variation with
area ratio is significant when holding inner stream cycle conditions constant
and normalizing for thrust and temperature. On the basis of constant mas
average velocity, V ,V. this variation is reduced and demonstrates that noise
may be correlated using this parameter. Spectra variations at 50%, 90*, 120'
and 140' are summarized on Figure 3-71 for a velocity ratio of 1.0. With the
exception of frequencies below 160 Hz, where the data are strongly influenced
by ground reflection, the spectrum shapes and levels are equivalent. Similar
comparisons for velocity ratios of 1.5 and 2.0 are sumnarized on Figures 3-72
and 3-73. The difference between the three configurations is frequency
dependent. Comparison of the 50" spectra for velocity ratios of 1.5 and 2.0

illustrates a change in spectrum shape as the outer stream pressure ratio
Increases. Also the variation in level due to nozzle area ratio is found to
increase significantly compared to the 1.5 velocity ratio comparisons. This
is attributed to shock noise occurring in the forward quadrant. The compar-
isons also suggest that reduction of the outer stream annulus height is an
effective way to reduce shock noise as discussed in Section 4.6.7, Reference
7.
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3.4.1.6 Unsuppressed Annular Jet Study

In addition to conventional and inverted flow cycles, coplanar coannular
nozzles were also tested at cycle conditions where (a) the inner stream flow
was reduced to zero and (b) it was held to be less than 10% of the outer
stream: termed testing with "low inner flow."

The low inner flow configurations were nozzles 9, 10, and 12 having
A 0/A = 2.0, 0.65 and 0.4, respectively. The zero inner flow nozzles were
configurations 11 and 13 have Ao/Ai= 0.65 and 0.4, respectively.

The detailed geometric parameters of these exhaust nozzles are sum-
marized on Figures A-9 through A-13 in Appendix A. The theromodynamic condi-
tions are summarized on Tables 9 thru 13 in Appendix B.

Normalized peak and 900 suppression levels as a function of velocity are
summarized for the low inner flow test series on Figure 3-74(a). Suppression
levels increase as area ratio decreases; >8 peak PNdB being measured for the
Ai/A = 0.4 nozzle (Model 12) in contrast to only 4 peak PNdB for Ai/Ao = 2.0
(Model 9). This trend is significantly different than discussed in the previous
section for inverted-flow cycles, where suppression level was only a weak
function of area ratio.

The influence of zero inner flow for the Ao/Ai - 0.4 coplanar-coannular
nozzle (Model 13) is summarized on Figure 3-75. The reduction of inner flow
to zero is found to decrease the average suppression at the peak noise angle by
3 to 7 PNdB. Significant changes in the noise levels at 90* are also observed.

A similar comparison for the Ao/Ai = 0.65 configuration (Model 11) is pre-
sented on Figure 3-76. Suppression is also observed Zo decrease with reduction
of the inner flow to zero, however, the decrease in suppression is from 1 to 3
dB. The absolute level of suppression also decreases when compared with the
A =/Ai - 0.4 configuration (Model 13).

Normalized PNL and OASPL directivity patterns are presented on Figures
3-77 and 3-78 for outer stream velocities of 2350 ft/sec and 1800 ft/sec.
Peak noise level is decreased as area ratio decreases. The noise levels of
the three nozzles are within 1 dB at 900. Selected spectra comparisons at
these conditions are on Figures 3-79 and 3-80, along with conical data at
comparable conditions. The 50* spectra at 2350 ft/sec illustrates the clas-
sical shock noise spectrum shape, The peak frequency of shock noise in-
creases as area ratio decreases and suppression relative to the conical
nozzle in the aft quadrant occurs in the mid to high frequency regime.

Similar directivity and spectra comparisons for AO/Ai - 0.4 and 0.65
coplanar-coannular nozzles, having no inner flow or low inner flow conditions,
are summarized on Figures 3-82 thru 3-87. The reduction of the inner flow to
zero causes an increase in noise level, particularly in the aft quadrant.
The PNL -hange in the forward quadrant is not as significant as OAPSL, indi-
cating a low frequency variance. This observation is supported by the
spectra comparisons presented. The trends are similar for the Ao/Ai - 0.4
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(Models' 12 and 13) and 0.65 (Models 10 and 11) nozzles, however, sensitivity
of directivity and spectra characteristics to inner stream conditions increases
as flow area ratio decreases.

3.4.1.7 Summary

Conical nozzle reference noise levels have been established on the basis
of PNL and OASPL variation with velocity, PNL and OASPL directivity, and
spectra. These levels will be used as a reference for establishing suppres-
sion levels. Measured conical noise levels correlated well with those pre-
dicted using existing methods.

Parametric variation of plug nozzle radius ratio showed that the sup-
pression increased with radius ratio as illustrated on Figure 3-87. Para-
metric studies utilizing coplanar-coannular nozzles having Ao/Ai - 0.4, 0.6
and 2.0 indicated that for inverted flow cycles, only slight variation of
suppression level occurred with change in area ratio. However, a similar
study utilizing these configurations showed that if inner-to-outer flow ratio
was held to less than 10%, a significant variation of suppression level with
area ratio occurred as illustrated on Figure 3-87. Reduction of the inner
flow to zero caused a significant loss of suppression.

3.4.2 Tests Related to Suppressors Influenced by Geometric and ycle
Variations, Single- and Dual-Flow Nozzles

This section presents the results of a series of acoustic studies to
establish suppression depending on geometric and cycle variations. Both
single and dual flow exhaust nozzles were considered. A suppreasor design
implemented on a single flow nozzle was termed a full span suppressor. The
implementation of a suppressor on a dual flow nozzle is termed a half span
suppressor, as it extends only across the outer flow stream.

Section 3.4.2.1 presents the results of studies performed to determine
the influence of suppressor area ratio and radius ratio on a series of 36-
chute nozzles implemented an both half span and full span suppressors. Flov
management and inner stream geometry variations are discussed in Section
3.4.2.2. Flow mnagement principles include variation of outer to inner
stream parameters of velocity ratio, Vo/Vi, weight flow ratio, B - WoVi#,
and area ratio, AoIAi. Flow segmentation studies discussed in Section
3.:4.2.3 utilized half span suppressors having 20, 30 and 40 shallow-hutes
implemented on a common flowpath geometry. The element type studies in Sec-
tion 3.4.2.4 utilized 36-spoke and 36--hute nozzles, as both half span and
full span suppressors, to establish suppression trends. Studies to evaluate
treated ejectors are discussed in Section 3.4.2.5.

In each section the peak noise suppression level was established as a
function of jet velo ity; referenced to the conical nozzle date of Section
3.4.1.1 The suppres ion level was found to vary significantly with jet
velocity and with se oral of the geometric parameters evaluated.
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3.4.2.1 Chute Area and Radius Ratio Studies

Area Ratio and Radius Ratio Variable, Turbojet (Models 15, 16 and 17)

This study investigated the influence of changing suppressor nozzle area
ratio and radius ratio on a turbojet exhaust nozzle system (see Figure 4.3-1
for description of'parameters). Models 15, 16 and 17 of Figure 3-88 were
used. Detailed schematics of the test configurations are in Appendix A,
Figures 9, 10 and 11. The aft plug geometry (150 half-angle and plug length)
was maintained, as well as the flow area of 23.76 in. 2 and segmentation- with
36 elements. For consistency of design, the chute depth to width ratio,
Dc/Wc, was maintained at 2.54 at the shroud and at 1.53 at the hub.

The following values applied to the model set:

Model Area ABloc~ed* Rp,, Rr Oplug,
No. Ratio in. in. in. deg.

15 2.5 35.64 3.739 5.738 0.653 7.42

16 2.0 23.76 4.00 5.571 0.716 11.61

17 1.5 11.88 4.22 5.399 0.782 15.86

The acoustic test matrix was defined in Section 3.2.1, Figure 3-8 and uti-
lized both the conventional turbojet cycle line and the high TT cycle line.

Acoustic results are presented as peak OASPL and PHL levels along with
curve-fitted-data suppression trends relative to the conical baseline in
Figures 3-89 and 3-90. Each figure has data separated into the conventional
turbojet and high TT cycle lines. OASPL and FIL at 90" ate presented in
Figure 3-91, 50' OASPL and PNL in Figure 3-92 and overafl power levels In
Figure 3-93. In reviewing the figures it is seen that:

0 On a peak OASPL basis, Figure 3-89:

aHximum suppression levels of 16 and 15 dB are seen for the
the AR - 2.51Rr - 0.653 suppressor (M1odel 15) on the high TT
and conventional turbojet cycle lines, respectively.

An ares ratio increases from 1.5, Model 17, to 2.5, Model 15,
(and radius ratio subsequently decreases from 0.782 to 0.653)
the peak OASPL suppression is substantially improved at all
aid-to-high Va. values; an increase in suppression of 6 to 8
AdS is seen at 2250 ft/sec, sa an example.

At very low Vm each suppressor performs equivalently, yet all,
maintain a suppression level near 8 to 9 APOASPL.
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* On a peak Pnl basis, Figure 3-90:

- A maximum suppression level of ne&r 12 to 12.5 4TB is seen for
theAR 2*/Br 0.653 suppressor (Model 15) for both the

conventional turbojet and high TT cycle lines of t,.;st.

-- Suppression variance with area ratic/radius rat-eý is very
predomirant, particularly at high Vma. The treaid with area
ratio reverses at low Vma; the xwgnitude in span of suppra-s'-
dion was lov'er than in the high velocity region. At high Vms,
the change in AR from 1.5, Model 11, to 2.5, Model 15, (and in
radius ratio from 0.782 to q.653 is seen to enhance suppreasion
by 4.5 t,) 5 dBi at Vma -2400 ft/sect as an exxpple. At low Vma,
the lower area ratio '(l.5)Ihigheic radius ratio (0.782), Model 17,
performs most effectively, shoving approximately a 2 dB suppreassion
gain relative to the AR -2.5 suppressor (Model 15).

* At 90t, Figure 3-91, on both an OASPLA and PNlL basis, minimal 4Wv-
Etnetion Is seen awonp the three area ratio models, and between the
tonventinnal turbojet and high T:, cycle lines. A significant level
of suppression rialative to the conical nettle is retained, both on
a PNlL and OISPL basis but. not of the magnitude measured at peak
noise angles in the aft quadrant.

* Ac 500, Figure 3-92, distinction between the three area rrtni
radius ratio models and between the two) cycle lines is a little
mare predominant then at 90. Suppression relative to the conical
nozzle is also somewhat higher duec to reduction in the uheck-cell
tiIomO contrihution which nornally adds to the conical sctale noiset
sigtisture ins the ftlgward quadrant at auperecritical aperating con-
ditlons$.

* O a OAPL assFigure 3-93, the data trends are sirillar to

I'tttose of the ptak (lASP'. and Poak PIQ. plots, showing suppressiowi
.improvement with area, ratio irerease at tdigh VA. and a near _equvr*-
alency at low V". Kxiwman spprewsiin of 9A U. h sien for. thejtatea ratio - 2.5 4t 2250 ft/sec.

to Illustratea the wre detailed changes io noise Characteristlcs atto-
ciatod vit~h changieg arest ratio anifd radius ratio, sets of fl?1, and -OASPL

* dirocuivity plus spectra plots aria intcluded as follows:

* Igiweeo 3-94 And 3-95 )a3ta Point 7, Vea UPS2. ft/soc, Ti3 CyC.vlet
fligurtxo 3-946 andt )-97 iAt. Point 13, V*2 2150 ft/eec. tM4II TT 0145

Fiturwsa 3-ýt8 and )'.99 Uits Point 60 V AX 1400 ft/se'i J 0vl~a Lit*.

Exmjsatnat io of Ow first data oat shine that. at the ihs astn n
point; a) The of t ivý;4rann dirtcaivity patrein no distinctly cblurper fot
the lower ares t~tttot tigher radius ratio, b) at bro4daid the levels 'a
nearly ideetir1rsl. and e) i the iWet-qtuadrant, distinct diff~ert~tstai

Is.K
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levels are seen but not of the magnitude observed at peak noise angles. The
highest area ratio/lowest radius ratio is always the best suppressor in the
aft quadrant but then show equivalency to, or slightly poorer performance
than, the area ratio = 2.0 nozzle (Model 16) within the forward quadrunt.
The lowest area ratio/highest ratius ratio is the poorest suppressor at all
angles.

"An increase in area ratio will generally decrease noise at a super-
critical operating point as the effect is to produce more rapid plume decay.
This is observed in the aft angle 1300 spectra, Figure 3-95, where post
merged low-to-intermediate frequency noise is significantly lower for the
higher area ratio. For this reason the normal double-humped spectra char-
acteristics of multi-element suppressors are not seen.

At 90* the spectra shapes are all nearly similar as were the PNL and
OASPL levels.

Within the inlet quadrant, changes in spectra are primarily in the mid
to high frequency range and bear out changes seen in the OASPL/PNL direc-
tivity patterns.

Looking at the second data set, Figures 3-96 and 3-97 at Vma - 2150
ft/sec, where peak PNL's are nearly the same for the three area ratio models
but peak, OASPL's show a spread of about 7 dB, the following are observed:

0 Peak PNL's occur at 120%, 110 and 1400 for AR - 2.5, 2.0 and 1.5,
respectively. OASPL directivity shifts to be peaked at the further
aft angles.I PNL directivity is fairly flat broadside and in the near aft qua-
drant (90* to 140*) with peaks occurring at 120%, 110' and 140' for
AR a 2.5 (Model 15), 2.0 (Model 16) and 1.5 (Model 17), respectively,

whereas OASPL directivity peaks further aft.

* The very sharp aft quadrant and near level forward quadrant direc-
tivity patterns of the conical nozzle are not present for the sup-
pressors. Shock-cell noise is the primary suppressor mechanism
responsible for the forward quadrant suppression, the forward
quadrant angles showing about 64PNL below the conical at 80' and
ipproximately 19 APNL at 40', with even preater A^s for OASPL.

* Looking more closely at 509, OASPL's are identical but PNL variet
about 3 db*3 the spectra showing a crossover of high and low fre-
quency influerce with area ratio variation. This indicates a
delicate balance between the high frEcquency premerged and low
frequency postmerged jet noise characteristics.

• Ilroad4tde, at 90, the same spectral crossover with area ratio is
tainto tned.

In the aft quadrant (12" to 150') spectra suppression relative to
die c(,tical is primarily in the mid-to-high frequency tanse with
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lower area ratio indicating quicker merging of individual jets and,
therefore, generating a higher content of low frequency noise.;
Very high frequency premerged noise at far aft angles (e.g., 150')
still shows significantly different levels for the three models,
reversed from the pattern at inlet angles (e.g., 50°) but they no
longer control OASPL or PNL.

For the third data set, Figures 3-98 and 3-99 at Vma 1400 ft/sec,
where the three models still maintain approximately 10 APOASPL and 4 to 5.5
APPNL suppression, the following observations are noted:

* Noise variance with area ratio/radius ratio is minor as PNL and
OASPL directivity patterns show, except in the very aft quadrant
where higher area ratio still maintains best PNL and OASPL suppres-
sion and shows variance relative to the lowest area ratio of 3
APNL to 5 AOASPL at 160'.

The crossover of noise directivity patterns with changing area
ratio still exists as it did at mid and high-velocity. The higher
area ratio is noigier at inlet angles and quieter in the aft quad-
rant, crossover normally occurring in the 100' to 140' region.

Area Ratio and Radius Ratio Variable, Dual Flow (Models 22, 24 and 27)

This study extended the previous investigation to a dual flow exhaust
nozzle system. Models 22, 24, and 27 of Figure 3-100 were used, each main-
taining the 36-chute suppressors of Models 15, 16 and 17, respectively, with
area ratios and radius ratios of 2.5/0.653, 2.0/0.716 and 1.5/0.782. In
place of the full plug turbojet geometry, an inner plug of 0.7" annulus step
height was used in the retracted position. This set the outer to inner area
ratio, Ao/Ai, at 1.92. Inner plug radius ratio was 0.779. Figures 16, 18
and 21 of Appendix A detail the model geometries. The inner stream geometry
does not utilize a mechanical suppressor. The suppressor is applied only to
the outer stream and is termed a'half span suppressor.

Farfield acoustic testing in the Cell 41 Anechoic Facility followed the
matrix described in Section 3.2.1, Figure 3-10 and Table 3-3. Each model
used the following cycle series:

0 Wi - 15Z Wo

* -Wi- 30%WO

* DBTF/Enverted Dual Flow cycle with 1.0V 0 /Vl•.2.0

* AST/V1'E

Additionally, Hodel 24 was tested with no inner flow while maintaining normal
outer stream cycle conditions.
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Acoustic results on a peak PNL basis, Figure 3-101, are shown for three
data sets, i.e., (a) for all data points, (b) for the Wj - 30% Wo cycle, and
(c) for the DBTF/Invertqd Dual Flow cycle. The results shown are selected as
representative of all the data cycle sets. For area ratio- 1.5 (Model 27) the
three data-fitted curves are nearly duplicates, except that the DBT? cycle
peaks at 11 APPNL suppression instead of at 10 as did the other two. For the
AR - 2.0, the three curves behave similarly within approximately ±0.3 APPNL,
peak suppressions being at 9 to 9.5 APPNL. The three data curves for the
area ratio 2.5 nozzle, Model 22 are generally the same with ±0.3 dB at high V
but show a spread of nearly 2 APPNL at low Vma. The above observations indicae
that outer to inner stream cycle variations, within the range tested, do not
significantly alter suppressor performance; if the measurements are normal-
ized with respect to thrust, mixed flow density, and correlated as a function
of Vma. In general:

* The area ratio and radius ratio excursions within the test range
show a noise variance of 1.5 APPNL min. to 3.5 max.; magnitude of
variance dependent on cycle Vma.

* The low area ratio/higb radius ratio is consistently better at low-
to-intermediate V.., just as it was for the full span turbojet
nozzle application.

* Peak suppression levels of 11, 9.5 and 10.4 for area ratios for 1.5
(Model 27), 2.0 (Model 24) and 2.5 (Model 22), respectively, are
somewhat below those of the same applications to the turbojet which
were 11.5, 12.0 and 12.5; indicating that a full span turbojet
suppressor is slightly more efficient than a half span suppressor
application to a dual flow system.

0 The AR - 2.5/Rr - 0.653 suppressor (Model 22) is consistently poorer
at low Vma and potentially better at high Vma. On the turbojet system
the same was true at high Vma, but, at low Va. little distinction was
seen between the AR - 2.0 and 2.5 (Models 24 and 22 respectively).

* The maximum PPNL suppression level for the AR - 2.5 nozzle. Model 22,
occurs at a higher velocity than for the 1.5 (Model 27) and 2.0
(Model 24) and in some instances the maximum value may not have been
achieved within the test range.

* Peak PNL suppression curves for each area raLio model show a trend
crossover occurring in the 2000 to 2350 ft/sec Vma range, generally
consistent with the 2000 to 2100 ft/sec range of the single flow
system.

Peak OASPL data are presented in the same manner in Figure 3-102 as were
peak PNL data, namely,(a) for all data points, (b) for Wi * 302 Wo and (c)
for DBTF/Invertea Dual Flow. The following are noted:

0 Consistency of data for the three cycle sets is very good, particu-
larly when comparing equivalent curve-fitted trends of APOASPL
where variance for each model is within ±0.5 da.
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* Variance in area ratio/radius ratio over the design range yielded a
min. to max. APOASPL of 2 to 5 dB, greater than the 1.5 to 3.5 AdB
span experienced on PPNL.

0 Maximum levelb of peak OASPL suppression are also lower than those
of the previous turbojet full span suppressors, i.e., 11, 9.5 and
12.5 APOASPL for dual flow area ratios - 1.5, 2.0 and 2.5, respec-
tively, compared to 11, 13 and 15.5 for equivalent turbojet models.
This again implies that suppression of the full stream is somewhat
more effective than suppressor application to the outer annulus
alone.

0 The relationship for sequence of models in improving suppression
from 1.5 to 2.0 to 2.5 seems to hold up on the peak OASPL basis.

* Crossover of APOASPL trend curves in the mid-to-high V., range is
not seen for the area ratio = 2.5 nozzle, Model 22, as it was on the
APPNL basis. Area ratio of 2.5 is consistently the best suppressor,
even at low V,,. Maximum POASPL suppression levels are higher than
they were for PPNL at about 12.5 to 13 APOASPL versus 10 to 10.5 APPNL.

* The AR - 2.0 nozzle, Model 24, is almost always the poorest POASPL
suppressor; however, AR - 1.5 exhibits near the same noise levels,
within 0.5 to 2 dB across the Vma range.

Data at 90, Figure 3-103 for PNL and Figure 3-104 for OASPL, indicate
that some suppression is retained broadside (primarily on the OASPL basis),
particularly at mid-to-high V. where shock-cell noise is prevalent in the
conical nozzle but negligible, if at all present, in the segmented suppres-
sors. Suppression levels relative to the conical nozzle are of similar
magnitude to those of the previous section's full span turbojet suppressors.

On both a PNL 4nd OASPL basis, a maximum variation of 3 dB is seen among
the three models on the WI a 302 We cycle data. No consistent trend of flUL
with area ratio is evident, but OASPL progressively increases as AR changes
from 2.0 to 1.5 to 2.5.

Similar 50* data, Figure 3-105 for PUL and Figure 3-106 for OASPL show
substantial forward quadrant suppression, even at low Vi, much higher levels
than at broadside. At h1h Van, with supercritical pressure ratio, levels
are very significantly belov those of the coaical nozzle due to absence of
shock-cell noise.

OASPL levels for the three models are fairly near the ease level and no
distinction between' area ratio is made, except for te Vi - 302 Vo cycle
where a spread of 2 to is seen.

On the PHI bast , variation of AR/Rr shows the AR * 2.5 "(Model 22) to
now be highest In le el and the AR - 1.5 (Hodel 27) to consistently imintain
the highest sup remai )n in the forward quadrant.
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OAWPL data are included as Figure 3-107 to show that no significant
variation with cycle or area ratio/radius ratio is present.

For more detailed variations in noise characteristics of PNL & OASPL
directivity plus spectra, the following data sets from the DBTF cycle matrix
were selected for inclusion:

Figures 3-108 and 3-109 Data Point 37, Vma = 2425 ft/sec,
Figures 3-110 and 3-111 Data Point 24, Vma = 1200 ft/sec,
Figures 3-112 and 3-113 Data Point 36, Vma - 1945 ft/sec,

The following observations are made from the first data set at high Vma:

41 OASPL and PNL directivity bear out the trends of noise at peak, 900
and 500 versus Vma in that significant suppression is seen at peak,
minimum at broadside and then somewhat higher levels in the forward
quadrant.

* Noise directivity of the suppressor nozzles has shifted from the
conventional conical nozzle pattern to now peak somewhat further
aft. At mid-to-low Vma the suppressor's directivity patterns more
closely match those of the conical or tend to shift peak noise more
toward the broadside locations. Directivity patterns are not uni-
form among the three area ratios in that the 1.5 (Model 27) and 2.0

(Model 24) are more peaked than the smooth distribution of the 2.5
(Model 22). Maximum variation in suppressor noise levels is seen in
the peak aft quadrant; however, levels are more uniform and within a
maximum spread of about 3 dB in the forward quadrant.

* Spectra at this high Vma point, for inlet to broadside angles, have
the characteristic flat to somewhat double-humped distribution with
suppression primarily in the midfrequency range where conical
nozzle shock-cell tone and broadband noise are normally dominant.
At further aft and peak angles, the spectra lose the high frequency
second hunp associated with the premerged jets and they more
closely resemble the conical nozzle. Suppression is still pri-
marily maintained in a broad band of frequencies, primarily cen-
tered in midrange. At all angles, the very low-irequency noise
levels associated with the postmergod jet!t are similar in level to
tilit, t'-41111cl.1

Best suppression on a flight transformed basis would be from the AR
2.5 nozzle, Model 22, (see 0 - 130* and 140*) where high frequency noise is
somewhat below that of the 2.0 (Model 24) and 1.5 (Model 27), in addition to
the greatly red-iced midfrequency levels.

At the low Vma point (1200 ft/sec and both streams operating suberiti-
cally):

* OASPL and PNL directivities are consistent with plots of peak noise
versus Vag, showing 3-4 APPNL and 7-9 APOASPL. At 900, PNL levels
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Figure 3-110. Impact of Area Ratio and Radius Ratio on OASPL

and PN•Directivity, Vm. a 1200 ft/sea, Dual Flow,
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Figure 3-112. Impact of Area Ratio and Radius Ratio on RIL mad
OAPYL Directivity, Vu = 1945 ft/sea, Dual Flow.
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are slightly above the conical nozzle (as the conical nozzle was
also operated subcritically and had no shock-cell noise) and OASPL
levels show 2-3 dB suppression. At 50% APNL and AOASPL are some-
what greater than at broadside.

0 In general the variance in noise level with changing area ratio is
primarily seen only in the aft quadrant and with maximum variance
of about 4 PNL and OASPL at 150% The AR -2.5 (Model 22) is seen to
generally be the best suppressor on a directivity basis.

* Plots at 5Q0% 9Q0 and 1200 to 1500 show slightly greater predom-
inance of the premerged high frequency spectra at aft quadrant and
peak angles. Suppression relative to the conical nozzle is still
primarily maintained in the midfrequency range but with high-
frequency noise levels approaching those of the baseline much
sooner than at high Vma and with some low frequency noise suppres-
sion observed, dissimilar to that observed at high V~a for coa-
parable angles.

For consistency of data presentation in comparison to similar data on
the full span turbojet suppressor models of the previous section, Figures
3-112 and 3-113 are included for a midvelocity point at Vma - 1945 ft/sec.

Area Ratio Variable, Radius Ratio Constant, Dual Flow (Models 33 and 34)

The purpose of this study was to isolate acoustic performuance as a func-
tion of area ratio alone, maintaining constant suppressor radius ratio.
Models 33 and 34 were utilized per Figure 3,114, each with a nominal value of
0.78 suppressor radius ratio and with a suppressor aren ratio of 2.5 and 3.0,
respectively. Schematics of the detailed system geometries are per Appen-
dix A, Figures A-27 and A-28. Model 33 of AR - 2.5, from the I4ASA-Lovis/GE
Duct Burning Turbofan program NAS3-18008 (Reference 10), was adapted to the
Cell 41 Anechoic Facility. Model 34 adds a new AR w 3.0 annular chute sup-
pressor to the same inner stream geometry. Pertinent parameters for the

models are:

Outer Inner sysem~

Flow flow stop
Model Atop, $o. of Area Radiuas Area, Uaight Plus "adies Am
No. in Chute& Ratio Ratio Sol. is. Location Ratio Ratio

33 1?.21 36 2.0 0.163 11013 1.014 Retseated 0.614 Co
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As shown in the tabulation, Models 33 and 34 maintained the same inner
flowpath geometry and flow area ratio of 0.65 and thus formed a true varia-
tion of suppressor area ratio at constant suppressor radius ratio.

Far-field acoustic testing was performed in the Cell 41 Anechoic Facil-
ity following a matrix similar to Section 3.2.1, Figure 3-10 and Table 3-3,
but expanded to be more consistent with the test matrix of the DBTF Program
(Reference 10). The following cycle series was used.

* Wi = 0, 15, and 30% Wo

a DBTF/Inverted Dual Flow Cycle

* AST/VCE

Comparative acoustic data plots for the two models are included in the
following format for the Wj - 0, 15, and 30% Wo cycLes, each norwlized and
versus VM.

* Figures 3-115 and 3-116 peak OASPL and PNL
0 Figures 3-117 and 3-118 900 OASPL and PNL
* Figures 3-119 and 3-120 50' OASPL and PNL
* Figure 3-121 OAPWL

Acoustic data for Models 33 and 34 were presented and discussed in
Section 3.4.2.2 (System Velocity Ratio Variation at Fixed Ao/Ai and Dtuct
Supteseor Geometry). It was shown that noise levels for low system area

ratio, Ao/Aj - 0.65, vary widely with cycle Vo/Vi, particularly studied
within the dBTF/Inverted Dual Flow cycle matrix for 0.6 9 Vo/V 1  ,. Within
this section, for isolation of suppressor area ratio Impact on acoustic
performanc., comparisons between the two models at fixed values of VoIVi =
0.6, 0.8, 1.0, 1.25, 1.5, 2.0, and * (no inner flow) are included In •igure"
3-122 and 3-123 for peak OASPL and peak PNL.

Supporting OASPL and PNL directivity data plus 1/3 OBSPL opectra,
selected as representative of the wide data matrix, are included in the
following graphs:

S Figurets 3-124 and 3-125 Wt 302 We, Vma 2075 ft/eec

a Figures 3-126 and 3-127 Wi 301 Wo# Va a 1340 ft/sec

Review of the data elicits the folloving geaeral observations:

* Level# of peak OASPL/PNL suppression vary considerably vith the
particular cycle under consideration. Kiisxim A peak PIL values
are oen to be approximately 19/13.5, 16.3/11.5, and 13.5/9.7 for. - 0, 15, and 302 Vo cycles fot the AR N 2.5 suppressor (Mlodel 33)
and 18.5/13, 16.7/12, and 15.5/10.7 for the Af a 3.0 noxile (Miodel 34).
This results in 4 spread of 5.5/3.7 and 3.1/2.3 peak OASPL/PNL. A
greater spread is seen In the DbTF cycle uvbse 0.6 < V 0/V I , as per
data of Section 3.4.2.2.
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- On a peak OASPL/PNL basis for the Wi 0, 15, and 30% Wo cycle,
Figures 3-115 and 3-116 show suppression trends with area ratio are
-ksj*$1r. t9*. ho@e*.9f phq prT.eio~s.jecpion'q tr.qtjdp. p.f area ratio/
radius ratio variation on a dual flow system in that; (a) at low
Vma, the lower AR = 2.5 (Model 33) shows consistently better sup-
pression from 0 to 3 on peak OASPL and from 1 to 4 on peak PNL, (b)
at high Vma the higher AR = 3.0 (Model 34) consistently shows a
potential for better suppression with improvements of 1 to 2 seen
on peak OASPL and 0 to 1 on peak PNL , and (c) the crossover in
trend occurs in the Vma range of 2000-2250 ft/sec. This occurs
for both peak PNL and peak OASPL whereas in the previous section
for area ratio and radius ratio variation on a dual flow system, it
was not a consistent trend on peak OASPL.

* At 90%, Figures 3-117 and 3-118, some suppression is retained
broadside for most cycles, particularly for OASPL and most notice-
ably at mid-to-high Vma where shock-cell noise is not predominant
in the segmented jets flow field. For all cycles and for both PNL
and OASPL, the lower AR= 2.5 (Model 33) is consistently the better i
suppressor, indicating levels of i to 4 lower PNL noise and from
0 to 2 lower OASPL noise than the AR = 3.0 (Model 34).

* Similarly at 50, Figures 3-119 and 3-120, substantial forward
quadrant suppression is seen relative to the conical nozzle;
greater than at broadside. Basic differences between the two area
ratios are not obvious as differences in levels are mostly nominal,
and where they do occur, they form no consistent trend for the
various data sets. This is consistent with the previous section's
variation of area ratio and radius ratio on the OASPL basis where
50' data showed no distinguishable preference with area ratio
variation. On the PNL basis, the previous data showed lower area
ratio to maintain better suppression by several AFNL.

0 OAPWL data for the three chosen cycles, Figure 3-121, indicate
i! t similarity of levels to better suppression by the lover AR - 2.5

nozzle, Model 33, from 0 to 4 AOAPWL looking from high to lpw V 'Previous data showed no significant variation with arua ratio

i • radius ratio.

0 Reviewing Figures 3-122 and 3-123, peak OASPL and reek -PN compar-
isons for the DUTF cycle at constant VO/Vi = 0.6, X3.3 1.0, 1.25,
1.5, 2.0, and - (no inner flow) shows: (a) conslsttntpictrends of
improved OASPL suppression with higher AR - 3.0 (.L. 34) for all
velocity ratios and V values, except when inner' .. Wv was completely
shut off (Vo/Vi = m);Wmnd (b) peak PNL trends ai' •imilar to those
of Figure 3-116 for Wi 0 0, 15, and 30% We, in that at low Va the
low AR (Model 33) is the better suppressor and at high Vas the
higher AR - 3.0 (Model 34) shows potential for greater suppression.

0 The OA'PL and PNL directivity data of Figures 3-124 and 3-126 indi-
cate (a) differences in OASPL level are primarily observed in the
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aft quadrant for both high Vma = 2075 ft/sec and the low Vma 1340
ft/sec, maximum variance of 5 AOASPL being seen at 1600 for the
high Vma point, and (b) for PNL, low Vma variance is broadside
where high Vma variance is in the aft quadrant with a maximum APNL
of 4 seen at 1600 for the high Vma point. Thus, no exceptionally
large differences are seen in the AR - 2.5 to 3.0 range. The data
are consistent with previous observations on the peak basis in that
at low Vma the AR = 2.5 (Model 33) has lower noise level and at high
Vma the AR - 3.0 (Model 34) is the better suppressor.

Suppoi- ing spectra (Figures 3-125 and 3-127) indicate that major
differences in noise content are in the low frequency range asso-
ciated with the postmerged jets and in all cases indicate lower
levels associated with the AR - 3.0 (Model 34). This would suggest
more rapid decay of the premerged individual jet plumes prior to
coalescence into a common jet, thereby resulting in a lower merged
velocity. Spectra comparisons at high frequency show dominance of
the AR - 3.0 (Model 34) at low Vma, thus, showing better suppression
for the AR = 2.5 (Model 33) as the high frequency levels are control-
ling both OASPL and PNL. At Vma - 2075 ft/sec the high frequency
spectra for the AR - 3.0 (Model 34) are normally lower level than the
AR - 2.5 (Model 33), thus effecting the previbusly observed improved
performance.

3.4.2.2 Flow Management and Inper Stream Geometry Studies

System overall parameters of area ratio (Ao/Ai), velocity ratio (VO/Vi),
and by-pass ratio (0 - Wo/Wi) are developed in detail to establish the basic
populsion nozzle for each dual flow system considered for application of an
annular half span suppressor. Detailed individual stream aerodynamic cycle
composition in terms of PTJO/Po, Ti, 0 and VI,o are selected consistent with
state-of-the-art component and cycle designs to provide system efficiency.
These variables were also found to sharply influence the acoustic effective-'I ness of a system which incorporates an amnular mechanical suppressor. Three
studies were performed to develop qualitative and quantitative suppressor
design directions. These are;

(a) System Velocity Ratio Variation With Fixed Ao1Ai and Fixed Outer
Stream Suppressor Geometry.

Outer to inner stream velocity ratio variance over a range of 0.6
< Vo/V4 < - has been considered for various annular suppressors,
Detailed results are presented for six representative chute, spoke

r ,and shallow-chute modals; three at Ao/Ai a 0.656 two at 1.92 and
one at 3.61. The results indicate that Vo/Vi influence ti most
predoininanot on low area rxitio systems, due to the more controlling
influence of the inner atteam.

.. .



(b) System 6 Variation With Fixed Ao/Ai and Fixed Outer Stream -

Geometry.

Outer to inner stream weight flow ratio, 8, at fixed values of •,
6.7, and 3.3 (corresponding to Wi = 0, 15 and 30% of W.) have been
considered in application to seven models. Detailed results from
four of these models are discussed and consistently indicate in-
creased acoustic efficiency of the annular suppressor with increase
in 6.

(c) System Area Ratio and Inner Stream Plug Geometry Variation - Fixed
Outer Stream Suppressor Geometry

A controlled study was considered utilizing six models to isolate
the impact on suppression potential due to system area ratio
changes, within the practical range for a variable cycle engine
(VM) system (Ao/Ai - 1.92 and 3.61). Changes in inner stream plug
geometry were evaluated, duplicating practical engine designs to
induce low amounts of flow into the inner stream. Results indicate
that higher system area ratio (effectivwly forcing a greater
portion of the flow through the suppressed annulus) yields higher
suppression. Inner flow geometry variance has minor impact on sup-"
pression for the high Ao/Aj system and mixed results for the low
Ao/Ai system.

System Velocity Ratio Variation at Fixed Ao/Aj and Outer Stream
Suppressor Geometry

This study attempted to isolate the influence of velocity ratio (Vo/Vs)
for a dual flow system. Systematic variation of velocity ratio was accom-
plished with fixed system area ratios (AolAi) and utilizing select multi-
element annular suppressors, indepandeat of any attempt to maintain con-
si•tont values of by-pass ratio (6 - Vo/01j). This was accomplished on Modela
22 to 32 and 36. of AO/Aj * 1.92 and 3.61, utilizing the DbTF/Inverted Dual
Flow tost matrix of Section 3.2.1, uhich set valuea of Vo/Vi at 1.0, 1.25.,
.1.5 and 2.0 and on Hcdols 33, 34, and 35 utilizing an expanded DTft/Inverted
Dual Flow test matrix with VofVj's - 0.6. 0.8, 1.0, 1.25. 1.5, 2.0 and - (no
intwr flow). Of these various v4oel#, six wore selected for pravenatUioa of
rosults herein, as follows:

D ~ta leut $400. Url P). $ eg.ftto1t1+ it~tN~ i

ft. Aff.• 0...... . - 0# i s . . U. _.tft .ie . . . ,4. . af.W.
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The last column of the above chart refers to the detailed geometric
definitions for each model in Appendix A. The first three suppressors,
Models 33, 34 and 35 of Figure 3-128, are of Ao/Ai - 0.65, the next two,
Models 31 and 27 of figure 3-129, are of Ao/Ai = 1.92, and the last, Model 26
of Figure 3-130, is of Ao/Ai w 3.61. Results are discussed as an aggregate. for each Ao/Ai value. The three basic varieties of the spoke/chute family of
segmented suppressors are represented, i.e., deep-chutes, spokes and shallow-

"chutes. All models are of relatively high suppressor radius ratio, R• -

0.716 to 0.783, consistent with advanced technology suppressor systems. Sup-
pressor area ratio range of l.j to 2.5 is also represented.

Results of peak, 900 and 50° PNL and OASPL are presented in the follow-
ing Figures for the three models of Ao/Ai - 0.65, each data set normalized as
per Section 3.3.1.7 and plotted versus Vma.

Model No. Peak 90 0 50*

33 3-131 3-132 3-133
34 3-134 3-135 3-136
35 3-137 3-138 3-139

Partial acoustic results from the three models are discussed in other sec-
tionsof this report (Section 3.4.2.1 "Area Ratio Variable, Radius Ratio
Constant - Dual Flow" compares Model 33 and 34's Area Ratio a 2.5 and 3.0
results, and Section 3.4.2.4 "Element Type Study-Dual Flow of Low System Area

* RaLio" compares Model 33 and 35 chute versus spoke results).

Observations of results from the above curves in relation to the goal of
isolating the impact of system velocity ratio are as follows:

* When isolated an data-fitted curves at constant Vo/Vi values, peak
OASPL and FNL acoustic results form progressive and consistent
trends of noise level. Trends on a peak OASPL basis are consis-
tently progressive from Vo/Vi - 0.6 to - for all three w.dels, at
any Vma. The noise levels are consistent with or slightly in
excess of, the conical baseline at Vo/Vi - 0.6, -ind they vary
progressively until AOASPL suppression levels approach 19 dB in the
2000 < i ft/see, < 2500 range for Vo/Vi - -, for each model.
vo/vi " -ais attained when the inner flow is curtailed completely
(by use of a positive shutoff mechanism placed about one diameter
upstream cf the inner exit plane). A blunt base region remains at
the inner exit annulus, over which the outer stream flow expands.

At mid-to-high Vma, maximuto PNL suppression levels of 13.5 to 16
PNdB are observed for the three models. The peak PNL levels de-
crease uniformly as Vo/Vi increases, but do not display the same
magnitude of change as on peak OASPL. At lower Vm, a reversing of
noise level trends is seen at the higher Vo/Vj ratios and levels of
suppression are substantially reduced.
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$ excursions for the individual Vo/VI cycle lines are:

VolV1  8

0.6 0.6 - 0.9

0.8 0.4 - 1.0

1.0 0.5 - 1.0

1.25 0.5 - 1.2

1.5 0.6 - 1.3

2.0 0.6 - 1.3

Normally at a fixed Vma, the inner and outer stream cycle condi-
tions selected for the test will result in increased 8 as Vo/Vi is
increased. Therefore, in addition to gradual dominance of the
noise caused by the outer stream velocity increase, the outer
stream weight flow increase also increases the noise. For the
Vo/Vj - 0.6 line, where Vo is 40Z less than Vi, and Wo is 10 to 40%
less than Wi, total predominance of the inner stream would be

expected. Suppression normally attributed to the annular plug
effect ( - 0,674) is not apparent. For the Vma range tested,
as Vo/vilncreases and the outer stream dominates both velocity and
mass flow, the effectiveness of the segmented suppressor becomes
more paramount and levels of suppression gradually increase.

* 1The greater the loss of peak PNI. suppression as oposed to peak
OASVL suppression at low Vm, and the much higher level of peak
OASPL suppression than peak PNL suppression at high Vmg indicates
that a complex and changing interaction exists in the spectral
composition for do.•inance of high or lou frequency. This is re-
lated te relaitiv noise levels of the inner and outer streams and
depends on the individual atream cycle composition in addition to
any possible innor/outer flow interactiona affecting noise genera-
. ion.

S PFtgurea 3-132. 3-135 and 3-138 show substantially less suppression
for the 90" P#L and OASPL data compared to the aft quadrant, how-
ever, significant level! of suppression are still attained. A
primary observation, i" relation to this study's goal, is that"1 ~discerte trends vith foystem velocity' ratio variatiock are not netirlyas disceruible as Lhey were at the peak i.oise angle. Data are "
therefore presented vithout individual curve fits for fixed Vo/Vi
values. In assembling the data, however, a fairly distinct data
trend was observed for the Vo/Vt - - case. Appendix B contains the
specific acoustic and aerodynamic cycle Infortwtiou.
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- ,f At 500, Figures 3-133, 3-136 and 3-139, the PNL and OASPL data are
similar to the 90* data. Again, trends are not as discernible-with
set velocity ratio and information is plotted without data-fitted
curves.

To illustrate the more detailed changes in noise characteristics asso-
ciated with system velocity ratio influence at fixed system Ao/Ai and fixed
annular suppressor geometry, the following representative sets of PNL and
OASPL directivities plus spectra plots are included; selected from Model 33
and 34's data banks:

Figures 3-140 and 3-141 Model 33, Vma = 2010 - 2050 ft/sec

Figures 3-142 and 3-143 Model 33, Vma = 1685 - 1840 ft/sec

Figures 3-144 and 3-145 Model 34, Vma = 2250 - 2390 ft/sec

Figures 3-146 and 3-147 Model 34, Vma - 1720 - 1830 ft/sec

The following general observations are made:

* PNL and OASPL directivity for the first data set on Model 33, where
Vo/Vi - 1.0, 2.0 and - are compared, show major and systematic
changes for 120* and aft. Significant, yet not as systematic, re-
ductions occur broadside and in the forward quadrant, the largest
change occuring between Vo/Vi of 2.0 and •.

• Spectra for the same data set show very broad changes in composi-
tion, particula-ly in the aft quadrant at 140", for Vo/Vi - 1.0
(Vo = Vi = 2050 ft/sec, B - 0.7). The inner stream low frequency
noise dominates, and high frequency associated with the segmented
suppressor is very low. As velocity ratio increases to 2.0
(Vo z 2600 ft/sec, Vi z 1300 ft/sec, 0 - 1.3), the low frequency
contribution to the spectra is extremely reduced. When inner flow
is cut completely, only a fairly flat spectra remains at 140%,
where normally an annular suppressor spectra would be more low
frequency dominated.

Changes with Vo/Vi at 120* are similar to 140", but not of the same
magnitude. In general both OASPL and PNL are low-to-mid frequency
dominated for the aft quadrant, therefore, changes at low fre-
(pleant, 'os coolt rl hoth, and stu)L;ot late, Lthe ladrgi var lnce oe Non at
higher Vma in Figure 3-131.

.• At 90 and 50", the low Vo/Vi spectra are more equally balanced for
low aid high frequency composition. Changes again are primarily
obsev-ad in the low-to-mid frequencies. Low frequency no longer
fully controls OASPL and PNL, therefore, the changes in these
valuei are ninor compared to those in the aft quadrant.

0 The second data comparison for Model 33 at V., from 1685 to 1840
ft/se,- for values of Vo/Vi of 0.6, 1.0, 1.5, 2.0 mad -, indicatesboth PINL aid OASPL trands similar to the previous cnwparison. Aft
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quadrant changes are very systematic and progress with system
velocity ratio change as shown in Figure 3-131. Broadside and
forward quadrant changes, as mentioned previously, are not as
distinguishable, except for Vo/Vi = .

0 Spectra comparisons at aft angles for this data set show low Vo/Vi
= 0.8 spectra shapes approaching the conical nozzle. Suppression
starts primarily in mid-frequency at Vo/Vi = 1.0 and is then more
broadband from low-to-mid frequency for Vo/Vi = 1.5 to 2.0. Termi-
nating inner flow again results in near flat spectra. In general
the broadside and forward quadrant spectra changes are mainly at
mid-to-high frequency for Vo/Vi = 0.8 to 2.0. When inner flow is
terminated, the low frequency levels are also substantially re-
duced. Again, the mid-to-high frequencies control PNL and OASPL
and therefore the low-to-mid frequency reductions do not signifi-
cantly reduce either.

* Model 34 data comparisons, Figures 3-144 thru 3-147, exhibit trends
similar to those of Model 33.

Results of peak, 90, and 500 PNL and OASPL are included in the follow-
ing figures for Models 31 and 27 at Ao/Ai - 1.92.

SModel No. Peak 900 500

31 3-148 3-149 3-150
27 3-151-3-152- 3-1 3

For this model set the DBTF/Inverted Dual Flow cycle matrix consisted of 12
data points at select values of Vo/Vi - 1.0, 1.25, 1.5 and 2.0. Therefore,
it did not cover the expanded range of the previous A0 /At a 0.65 models and
broad results are not as conclusive. Data for these two models are partially
presented elsewhere in this report (Section 3.4.2.3 "Flow Segmentation Study"
for Model 31, comparing 20, 30 and 40 elements and Section 3.4.2.1 "Area
Ratio and Radius Ratio Variable - Dual Flow" for Model 27, comparing area
ratios/radius ratios of 1.5/0.782, 2.0/0.716, and 2.5/0.653). The results
are presented in those sections as data fitted curves through the aggreaate
of test points. They normally show that the variance from the mean line is
small enough to consider no distinguishable noise trend with Vo/Vi.

The last model of the six selected for data presentation is Model 26
(36-chute of Ao/Ai - 3.61). Peak, 90" and 50" PALIOASPL data are presented
in Figures 3-154. 3-155 and 3-156, respectively for this model. The param-
eter $ ranges from 2.8 to 8.8, therefore the outer stream dominates in noise
generation. Little Variance is distinguishable for the four Vo/Vi settings,
and what "ittle exists is less than the variance seen in the ;O/Ai a 1.92
system. No' inner/outer flow interaction mechanism seems to be present to
enhance tho suppression above that of a basic suppressed annulus.
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System 8 Variation at Fixed Ao/Ai and Duct Suppressor Geometry

This study continues the theme of system variation investigations. The
previous section isolated the influence of system velocity ratio and this
section isolates the impact of system weight flow ratio, 8. Primary emphasis
is placed on systems which utilize low amounts of inner flow, in an effort to
extend preliminary results of the NASA-Lewis/GE Duct-Burning Turbofan Program
(Reference 10). These results indicate that unsuppressed coannular and
suppressed annular systems show enhanced suppression with low amounts of
inner stream flow.

Seven test configurations were utilized, varying system area ratio and
annular suppressor geometry, and the following four were selected for pre-
sentation of results herein:

Outer Strom Inwer Strom

floy Stopt TIM A
140dol System Element Are Noelght Plu Area, VUvru

No. Ao/Ai ftscrtptios AR it in, in. Losetiao i , j2 SIerleee

33 0.63 3-Chute 2.5 0.763 17.21 1.03 letracted 0.674 11.12 27

34 0.63 36-Chute 3.0 0.703 17.21 1.03 Retrctod 0.674 1.12 a2

31 1.92 30-Shallow Chute 1.75 0.717 23.16 0.70 etracted 0.779 12.39 as

23 1.02 36-Chute 2.0 0.716 23.16 0.70 te-UNG 0.779 13.39 17

The first three models are the same as in the previous section (shown in
Figures 3-129 and 3-130). A photo of Model 23 is included as Figure 3-157.
The last column of the above chart references the detailed geometry sketches
for each model as shown in Appendix A. Three of the configurations have
annular deep-chute suppressors and Model 31 has an annular shallow-chute sup-
pressor. The first two models have Ao/Ai of 0.65 and the remaining two have
Ao/Ai of 1.92. The suppressor area ratio range is 1.75 to 3.0 and the radius
ratio range is 0.716 to 0.783. Each model is representative of an advanced
technology dual flow system with half-span suppressor application.

Systematic variation of weight flow ratio was accomplished using pre-
selected B values of 3.3, 6.7 and c. This corresponded to metering inner
stream flow rates at 10, 15 and 0% of the outer stream. The 8 - c case is
attained when the innir flow is curtailed completely by use of a positive
shut-off mechanism platced about one diameter upstream of the inner flow exit
plane. Through this V: variation, for the two Ao/Ai systems selected, the
system velocity ratio varied as follows:
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Ao/Ai 6 Vo/Vj

0.65 6.7 6 -14

3.3 6 -11

1.92 6.7 2.5 - 8

3.3 1-3

Acoustic results in terms of peak, 900 and 50' PNL and OASPL are
presented individually for each model in the following figures. Eacl,
data set if normalized per Section 3.3.1.7 and plotted versus Vma. The
peak PNL and OASPL data sets have A plots showing suppression relative
to Lhe baseline convergent nozzle.

900 50*
Model, Peak Peak PNL & PN!, &

No. PNL OASPL OASPL OASPL

33 3-158 3-159 3-160 -161
34 312 163__31

34 3-162 3-163 3-164 3-165'31 3-166 3-167 3-168 3-169

23 3-170 3-171 3-172 3-173

The following are observed:

0 System weight flow ratio, 0, is a strong parameter which influences
peak PNL and peak OASPL significantly. The magnitude of influence
is somewhat greater for low system Ao/Ai of 0.65 than for 1.92.
The influence is fairly systematic, progressively decreasing sup-
pression capability as 8 is lowered from ,% to 6.7, to 3.3. In-
fluence of B on the Ao/Ai - 0.65 system is fairly consistent over
the Vma test range, whereas, on the Ao/Aj 1.92 systems, it's
influence is primarily at mid-to-high Vma; suppression variance
decreasing on both PNI, and OASPL basis.

At Ao/Ai - 0.65 (Models 33 and 34), peak PNL changes up to 5 dB at
low Vma (between B - 3.3 and -) and up to 3 dB at high Vma. The
corresponding peak OASPL variances are about 5 and 6 dB, respec-
tively.

e In th. previous study, system velocity ratio varied over the 0.6
< Vo/Vi range, with small incremental and systematic variations
exercised within the 0.6 to 2.0 range. Accompanying 0 ranged from
0.4 to 1.3. Variations in noise level appear to be primarily con-
trolled by whichever stream's noise dominated the spectral compo-
sition. At preselected values of 0 of 3.3 and 6.7, Vo/Vi vari-
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ations range from 1 to 14. Therefore, flow and velocity dominance
is always in the outer suppressed stream and inner stream flow and
velocity are always minor on a thrust contribution basis. The
resultant systematic changes in noise as B progress from 3.3 to 6.7
to *o are judged to be attributable to flow interaction mechanisms
rather than pure inner/outer flow dominance.

0 At 90* the 3 influence on PNL and OASPL is aimost as strong and
consistent as at peak angle for the Ao/Ai - 0.65 systems, but is
configuration dependent for the Ao/Ai - 1.92 systems. Little
variance is seen for Model 31, whereas the 90* data for Model 23
still shows considerable variance, but it is not progressively
systematic.

* 50* data trends are quite similar to those at 900 and are config-
uration dependent. The Ao/Aj " 0.65 systems still exhibit distinct
and progressive variance with 0 changea and the Ao/Al w 1.92 Model
23 data again shows non-systematic variance. The Model 31 data
however, show some magnitude of systematic variance, similar to

that of the peak noise levels.

* Examination of the model definition table above and the detailed
schematics of Appendix A shows that for Hodels 31 and 23, the area
ratios were equivalent, lovever, Model 31 had a retracted inner
geometry, similar to that of the Ao/Aj a 0.65 aystems, and Model 23
had an in-line inner flow plug geometry. This difference may
explain the variations In data seen between Models 31 and 23 and
the closer match of Model 31's trends to thoee of the Ao/½i 0.65
systems.

stem.Area Ratio adInner Stream Plo q eit Auito -F~d0t'er

Stream Supprews.r G.o.•ot,

Tho last of the three studies tupporting the impact of Flow Maw#*wment/
Coro Geometry zonuiderationu on noise was a controlled effort to ioolate the
oeftscts of systoe area ratio and iiner stresa plug gemnsrty. Each of these
"parmators *as varied within the practical range for a wriable cy cl eajine
systea. Six odels ware used, per the following thartt

*"I 51.t.0 MGal.* 2.0A I*

1i # |.it C, ole 2.0 9.714 MU . 0 &11t OJlP$ 1120 0,ID-I~l i

145 3.41 2*-Get 2.0 0442.t0.23 Sfto-Um 0," L%

19 1.42 "Po.i 2.0 0.3811 1.7 0.2 O b . 6.1• 9 .36 1U
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Photos of Models 23 through 26 are included in Figure 3-174. Figure 3-175
shows Models 28 and 29. The last column of the above chart refers to the
detailed sketches of each model shown in Appendix A.

Variations of system area ratio and inner stream plug geometry were
accomplished by us.'ng interchangeable modul3r inner stream hardware, sche-
matically shown in Figure 3-176. An inner stream plu-i allowing 0.70" anrulus
height (schematics a and b), resulted in an inner flow area of 12.39 in.
This, combined with the outer flow area of 23.76 in. 2 , effected an ioAji of
1.92. Using the 0.35" annulus height inner stream plug %hanged the inner
flow area to 6.58 in. 2 and the Ao/Ai to 3.61 "(scl.ematits c and d). Ir,-Line
,inner stream plug geometry (scheratics a and c) was altered to retracted,
(schematics b and d) through removal of a support spacer.

kas shown in the above table, two basic annular suppressors were used
(36-chute and 36-spoke), each of AR - .0 and R- - 0.716. Within model sets
23/25 and 24/26, system area ratio, Ao/Aiý varied from 1.92 to 3.61. The
first s•t utilized an in-line plug, and the second set utilized a retracted
plug geometry. Compýirisons for inner stream geometry variations were made
using m-odel sets 23/24, 25/26 and 28/29 (the first and second sets with the
3b-chuto suppressor 3t Ao/Ai w 1.92 arti 3.61, respectively, and the third set
with the 36-spoke suppressor of Ao/Aj a 1.92).

Tho six models were testad in the Cell Al Anechoic Facility per the
matriR of Section 3.2.1, Figure 3-10 and Table 3-3, utillzing the cycle lines

* Wl 15 and 30X WO

. )DTF/inverted Dual Flow

. AST, VC&

W t a in tar%* of peak, 90" dW 50" (.DN*L and OAS-PL) it* prevented li the

fllorung figures, norcalixod per Section 3.3.1.1 a.a plotted versua Vgw:

41MA01 Vi 152 30Zi VO OUTIIhVb Dual Flow

23, •, ZS & 26 1-177 to 3-180 3-181 to 3-184 3-185 to 3d18

28 And 29 13-189 to 3-191

Conotaring the todel qets for tyttem troa ratio varationl (Nodels 23/25 aid
24/26), the folloving observatiofts are noted:

* Peak P1L for all three data cycle Aets indicate that An/Aj - 3.61
is universally the better suppre~tor sy•t•m, because a greater
ptroportion of flow Is passed through the togmented tnnular. sup-
pressor. Ditfereas, between Iodals 24 tod 26, with retracted
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Figure 3-178. Peak OSPL Variation with A /A1 and Inner Plug
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Figure 3-179. 90* PNL and OASPL Variation with Ao/AL and Inter Plug
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inner strean geometry, represent up to 3.5 dB greater suppression
for higher area ratio at = 2000 ft/sec Vga. Differences between
Models 23 to 25, with in-line plug geometry, however, are not as

uniform in trend or magnitude.

0 On the peak OASPL basis, trends similar to the peak PNL data are
observed, with the higher Ao/Ai - 3.61 (Models 25 and 26) consis-.
tently exhibiting greater suppression than the Ao/Ai - 1.92 (Models
23 and 24). Model 26 shows up to % 5 AdB greater suppression than
Model 24 at mid-Vma range, but again, Models 23 and 25 show much
less variance.

* At 90*, on all three cycle lines, all four models have similar
noise levels (no distinction observable for system area ratio
change on either a PNL or OASPL basis).

* Results at 50* are generally similar to the 900 data, with no pre-
dominant distinction between models. The Wi - 15% Wo cycle data is
an exception, where separate data-fitted-curves can be drawn
through the aggregate of Ao/Ai - 1.92 and 3.61 data sets. This
indicates z 1 AOASPL and a 2 APNL greater suppression for the
higher area ratio.

In comparing model sets for change in core geometry from in-line to retractedi
at fixed Ao/Ai (Model sets 23/24, 25/26 and 28/29) the following observations
are noted:

* Model set 25/26 on all three cycle lineq (Figures 3-177, 3-181 and
3-185), and Model set 28/29 on the DBTF/Inverted Dual Flow cycle
line (Figure 3-189), show no significant difference in peak PNL
noise levels with change in inner stream geometry, at any Vma tested.
These model sets are of Ao/Ai = 3.61 and 1.92, respectively. Model
set 23/24, of in-line and retracted geometries, respectively, do
show some variance, particularly at higher Vma; the in-line geom-
etry indicates somewhat greater suppression potential.

9 Models 28 and 29 (Figure 3-189) show no pronounced difference in
levels on a peak OASPL basis. Models 25 and 26 (Figures 3-178,
3-182 and 3-186) are basically equivalent except for z 0.5 to 0.8
AdB greater suppression for the retracted position on the Wj " 30%
Wo cycle line. Models 23 and 24 (Figures 3-178, 3-182 and 3-186)
again show variance favoring the in-line geometry on each of the
cycle lines tested.

* For 900 data, (Figures 3-179, 3-183, 3-187 and 3-190) for all model
comparisons on all cycle lines, no distinction is seen between in-
line and retracted core geometries.

* 50' PHiL and OASPL (Figures 3-180, 3-184, 3-188 and 3-191) show no
inner flow geometry preference except for the Wi - 302 Wo cycle
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line where the Model 24 retracted inner stream plug shows 1
AOASPL and up to z 2 APNL greater suppression at low Vma than the
Model 23 in-line plug.

For the impact of system area ratio and inner stream geometry changes on PNL/
OASPL directivity and spectra, the following representative data are included
for Models 23, 24, 25 and 26, from the Wi - 30% Wo cycle line:

0 . Figures 3-192 and 3-193, Vma - 2300 ft/sec

* Figures 3-194 and 3-195, Vma = 1875 ft/sec

* Figures 3-196 and 3-197, Vma = 1380 ft/sec

Summary-Flow Management and Inner Stream Geometry Studies

Flow Management and Inner Stream Geometry Studies for a dual-flow nozzle
system incorporating an outer stream half-span mechanical suppressor have in-
vestigated the aerodynamic cycle and geometric nozzle variations which would
most significantly impact noise suppression capability. Consideration has
been given to: a) system velocity ratio (Vo/Vi); b) system weight flow ratio
(0 - Wo/Wi); c) system area ratio (Ao/Ai) and d) inner stream plug geometry.
Primary design considerations evolved from a series of three distinct studies
are as follows:

* Velocity ratio influence is most predominant in systems of low area
ratio where the inner stream exerts more of a controlling influ-
ence. Progressive and systematic increases in peak OASPL suppres-
sion occur as Vo/Vi changes from 0.6 to -. Fairly systematic
changes in peak PNL are also observed, but not of the magnitude or
as progressively uniform as on peak OASPL. At broadside, and in
the forward quadrant, systematic variation of noise levels with
Vo/Vi variation is not evident.

* Highest suppression levels are attained when inner flow is com-

pletely terminated and the outer stream effectively discharges over
an abrupt-step formed by the inner stream annulus. Peak PNL sup-
pression levels of up to 13.5 dB were seen on the 2400 ft. sideline
for Model 33, the 36 chute AR - 2.5, R• - 0.783 system of Ao/Ai -

0.65. Figure 3-198 compares this closed inner stream system's sup-
Spression to levels attained by three full plug turbojet configura-
tions; namely, Models 15 & 17, of AR, Rr v 2.5/0.653 and 1.5/0.782
discussed in Section 3.4.2.1 and Model 41 of AR, Rr - 2.5/0.78
presented in Section 3.4.3.1. In all cases the abrupt-step system
showed greater suppression potential. It is recognized that this
system may he unacceptable from an aero performance consideration.
However, it does provide an upper limit in noise reduction which
could conceivably be achieved by judiciously bleeding the inner
flow.
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Model AR R Description

33 2.5 0.783 Dual Flow System, No Inner Flow
41 2.5 0.783 Full-Plug Turbojet
15 2.5 0.653 Full-Plug Turbojet
17 1.5 0.782 Full-Plug Turbojet

14

7f/ •.36 Chute SuppressOs

Mass Average Velocity, rt/see

Figure 3-198. Stumary Comparnion of Suppressed Duel flow with NO •Iun
Flow to Full-Plug ITurbojots.
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0 For systems of Ao/Ai- 1.92 the magnitude of noise variance with
Vo/Vi is not present as it is for the low area ratio system, as the
outer stream now controls the major portion of the system flow.
Individual data sets, however, do show some distinct variance with
velocity ratio within the range of 1.5 to 2.0.

* For Ao/Ai - 3.61, with B from 2.8 to 8.8, the outer stream dominates
noise generation and little variance is discernible for 1.0 <
Vo/Vi < 2.0

* Injecting low amounts of inner flow to effect 8 values of 3.3, 6.7,
and - shows 8 to be a strong system parameter influencing suppres-
sion. The influence is greater for low system area ratio and
changes are fairly systematic, decreasing suppression as 8 is
lowered from - to 3.3. Changes in peak PNL range from 5 to 3 AdB
at low to high Vma over the B range tested.

* System area ratio variation impacts suppression performance sig-
nificantly. The high Ao/Ai value of 3.61 indicates peak FNL and
peak OASPL suppression gains up to 3.5 and 5 dB, respectively over
the lower Ao/Ai counterparts. Impact is primarily in the aft
quadrant with 90 showing no systematic trends and 500 only Indi-
cating higher Ao/Ai is still favorable.

* Inner stream geometry variation from the in-line to the retracted
conf•gurations has negligible impact on suppression. Variance
witlhn the model sets is vot strong or consistent enough to sub-
•antiate a&o prefereace of geometry.

3.4.2.3 Flow Segmentation.,Studv
The intention of this study was to investigate the impact of degree of

segmentation of an annular duct supreasor within a dual flow exhaust nottle

System. Models 30, 31, and 3. .(Figure 3-199) of 20. 30 and 40 shallow chute
element, respectively, were utilized. Detailed schetatics of the eodals aes
in Appendix A. Figures 24, 25 and 26. Inner areum flowpath geometry was
hold cosistant using the 0.7-in. annulus height plug in the retracted pMt-
tion. Paraacters of the outer flov1pth hold cousto~t were,

S Flov area -23.76 iti.2

0 Blocke-d area - 17.82 In.-

* Supprossor area ratio 1.75
0 Suppressor radius ratio * 0.717
* Shroud I.D. - 10.44 in.
* Plug O.0. * 7.48 in.
* Upstream flow gkoS•ry
0 System area ratio, AO/Ai, 1.92

24U
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The only geometric variable was element number, more finely segmenting
both flow and blocked areas as element number increased.

Acoustic test matrices were as described in Section 3.2.1, Figure 3-10
and Table 3-3, testing each model for the following cycle series:

S. Wi = 15% Wo

0 Wi = 30% Wo

* DBTF/Inverted Dual Flow with L.0<Vo/Vj.ý2.0

* AST/VCE

Model 31 was additionally tested with no inner flow 'while maintaining a
normal outer flow cycle.

Acoustic results, if presented as an aggregate of all test data on the
basis of peak noise levels, show (as in Figure 3-200) that:

* Maximum suppression levels of 10 APPNL and 11.5 APOASPL were
attained.

* .At low and intermediate V., finer segmentation is more effective
on a peak PNL basis; however, a switch to lower element number is
more effective at Vma> 2 2 5 0 ft/sec.

. On the peak OASPL basis the coarser segmentation of 20 elements

"J (Model 30) is significantly more effective and no significant
distinction is seen between the finer segmentation of 30 or 40
shallow-chutes (Models 31 and 32).

Closer evaluations of the data, as applicable to the individual cycles of a)
W - 15 W b) Wi - 30% Wo, and c) DBTF/Inverted Doal Flow, are presented ia
the followans:

Figures 3-201 and 3-202 Peak PNL & OASPL
Figures 3-203 and 3-204 90' PNL & OASPL
Viguros 3-205 and 3-206 50' PNL & OASPL

•:' Figure 3-207 OAMW

Peak PNL data in Figure 3-201 for all three cycle lines show that finer
t segmentation yields "re effective suppression at low and intermediate Vga,

and a maximum level of near 10 APPRL is experienced. Degree of segmentation
ris relatively unimportant at 2000<,V 42250 ft/sec. then coarser segaentation!,i:become& more effectivq at Vua>2250 Irt/sec. Variance of up to 5 A•PPL is seen

for the study excursion range of 20 to 40 olemats, magnitude depending on

Scycle line an3d Va. selected.

figure 3-202, peak CASIPL. data tor the three cycle curves, she'a lower
element number segmentation to be constently more effective. A variance of•i I to 4 APOASPL Is sew• fro* 70 to 40 elements, magn itude of variance alvay
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greater at higher Vma. Distinction between 30 and 40 shallow-chute perfor-
mance is nil. For the DBTF/Inverted Dual Flow cycle data, both for peak PNL
and OASPL, minimal distinction is seen for Vo/Vi variance from 1.0 to 2.0;
the data adhering well to smooth singular trend curves.

Figures 3-203 and 3-204, for 900 PNL and OASPL, show that PNL suppres-
sion is still attained at intermediate and high Vma settings, but at low Vma
the self noise of the shallow-chutes raises the PNL levels slightly above the
baseline. Moderate levels of OASPL suppression are maintained at all Vma
values. Finer segmentation is more effective at all cycles, at all velocity
values and for both PNL and OASPL, a nominal 3 to 4 APNL greater suppression
afforded by 40 (Model 32) relative to 20 elements (Model 30).

Figures 3-205 and 3-206, for 500 PNL and OASPL, show that substantial
PNL and OASPL suppression is maintained in the forward quadrant, both at low
Vma where turbulent mixing noise is prevalent and at higher Vma (supercrit-
ical pressure ratio) where the suppressor very significantly lowers noise
levels relaLive to the conical. noise levels. On an OASPL basis, little
distinction is seen ii fineness of segmentation, whereas higher elpment
number still offers significant improvement on a PNL basis.

OAPWL trends with Vma, Figure 3-207, are consistent with those of PPNL
in that (a) finer segmentation is more effective at low and intermediate Vma,
(b) degree of segmentation is relatively unimportant for 20 00 <Vma< 225 0, and
(c) trend is for more effective suppression with fewer element at Vma>2250
ft/sec.

For a more detailed evaluation of suppressor 3egmentation influence onSPNL and OASPL directivity plus spectra characteristics, the followiug data
sets from the DBTF cycle are included as representative of the overall teat

results.

Figures 3-208 and 3-209 Data Point 37, Vma - 2425 ft/sec, Vo/Vi - 1.9

Figures 3-210 and 3-211 Data Point 26, Vma - 2100 ft/sec, Vo/Vi - 2.0

Figures 3-212 and 3-213 Data Point 24, Vma - 1200 ft/eec, Vo/Vi - 1.0

A general review of the above data suggests:

0 The PNL angular variation of these multielement suppressors hint at
the classical migration of maximum noise angles at lower inlet

r angles relative to the covical nozzle.

* At high Vma (supercritical pressure ratio in the outer stream),
large amounts of inlet angle suppression are seen. The primary
suppression mechanism is reduction of the strong puretone and
broadband shock-cell noise, prevalent in the conical nozzle noise
signature.
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* The multielement suppressor's noise signature is observed to be a
fair balance of pre and postmerged jet noise sources. At forward
quadrant angles, the double humped spectra distribution, and in
cases dominance of the premerged or high frequency noise, is nor-

-mally seen. As expected at aft quadrant peak noise angles, the low
frequency noise portion of the spectra tends to contribute more to
the total noise with increasing velocity. This result implies
greater importance of the merged-flow region in ultimately defining
"the velocity range of noise suppression.

In depth examination of the first data set, Figures 3-208 and 3-209 at
Vma =2425 ft/sec, suggests the following:

* At peak noise angles, sinificant suppression relative to the conical
nozzle is realized by the shallow chute models, particularly for 20
element segmentation (Model 30). Aft quadrant suppression is low
to nil. Forward quadrant suppression is extremely high, up to
12 APNL and 13 AOASPL at 500 due to reduced shock noise. The
conical nozzle and outer stream cycle pressure ratios were at 3.92
and 3.98, respectively, for this data set. Slight amounts of shock
noise influence can still be detected in the suppressed nozzle
spectra at 50 and 70Q.

0 In the aft quadrant, suppressor spectra shape closely approximates
that of the conical nozzle; at 120 fairly broadband suppression is
observed, at 1400 midfrequency levels are best reduced and at 150,
little-to-no suppression is present.

For the intermediate Vma - 2100 ft/sec data set, Figures 3-210 and 3-

211, the following are observed:

_ Little variance is seen in peak PNL level but peaks shift from 120*
for the 20 element to 140o for the 30 and 40 element suppressors.
At the 140* location, spectra are similar for the 30 and 40 shallow-
chute, Models 31 and 32, and suppression for the 20 element, Model 30
is quite broadband.

* The 20 shallow-chute, Model 30 noise is highest at inlet and broadside
angles then lowest at aft angles~on both PNL and OWSPL bases, a
full reversal of trends.

- Variation i, PNi. at forward angles is more pronounced than for
OASPL. This is because low and intermediate frequency spectra are
near to the same levels for the three modela, and essentially
control OASPL. In contrast, larger varis,,ce in P'UL is controlled
by high frequency spectra, still somewhat influenced by tone and
broadband shock noise for the 20 and 30 eiement models. The larger
chara.-eristic flow dimensions and wider spacing between individual
jets of the more coarsely segmented streams allow for development
of sh..k structure and for radiation of associated tone and broad-
band noi'se before shock structure has decayed or has been destroyed
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by merging of the individual jets. The duct stream was operating
at a supercritical pressure ratio of 3.28 for this test point.

The third data set, Figures 3-212 and 3-213, is at Vo - Vi = Vma = 1200
ft/sec. Significant PNL suppression occurs only in the peak and aft quadrant
angles and is fairly broadband in frequency range. Low element number is
slightly more effective at most angles. This is attributable to suppression
of the controlling low and midfrequency spectra, even though high frequency
noise levels are normally above those of the 30 and 40 element models.

3.4.2.4 Element Type Studies

Previous technology on multielement suppressors had indicated that
ventilation capability of the segmenting element is an important parameter in
the overall suppressor selection and system design. From an installed per-
formance viewpoint, well ventilated chutes had substantially less thrust loss
then low or nonventilated spokes, due primarily to the differences in base
drag associated with the chute/spoke blockage area. Spokes, however, are
mechanically far easier to implement within a nozzle system than chutes.
They can be stowed on the plug surface and deployed simply for suppressor
activation. Deeply ventilated chutes, due to their large size, must be
stowed within the plug itself and are significantly more complex to deploy.

Data previously available for comparing chute to spoke performance was
on a turbojet annular suppressor of low duct radius ratio. The current
studies extend this data base to systems of high duct radius ratio for appli-
cations of full span suppressors to turbojets and of half-span suppressors on
dual flow systems of moderate and low system area ratio, i.e., Ao/Ai - 1.92
and 0.65.

Element Type Study, Turbojet

The impact of varying element design from a fully ventilated chute to a
nonventilated spoke was investigated on a full plug turbojet system within
this study. Models 16 and 18 were used per Figure 3-214 photo and Figures 10
and 12 of Appendix A. The base model wAs a 36-chute suppressor of area
ratio - 2.0 and radius ratio - 0.716. Removable filler inserts were used to
convert from a well-ventilated chute to a nonventilated spoke designed to be
flush with the shroud outer flowpath and with the chute exit plane. The
acoustic test matrix for these turbojet configurations followed the matrix
Seccion 3.2.1, Figure 3-8, using conventional turbojet and high TT cyclelines.

Review of the acoustic results in terms of peak OASPL in Figure 3-215
and peak PNL in Figure 3-216, (each showing the two cycle line results sep-
arately) indicates:

0 A maximum suppression level of 13.5 dB is achieved relative to the
conical nozzle by the spoke, on both a peak OASPL and a peak PHL
basis.
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* On the peak OASPL basis, the spokes and chutes are equivalent
except at high velocity where the spokes becomes less effective
than the chutes.

* In the high Vma range, the spokes become substantially noisier
than the chutes.

At 900, Figure 3-217, spokes are more effective than chutes, from 1 to
2.5 APNL in the mid-Vma range, and,become equivalent to chutes at the highest
Vma tested.

At 500, Figure 3-218, results show that effectiveness of element type is
more dependent on cycle line, the high TT cycle line showing equivalence of
spoke/chute and the conventional turbojet cycle line showing the spokes
significantly more effective on a PNL basis.

On an overall power level basis, Figure 3-219, trends are the same as
for peak PNL, showing spokes superior at mid-Vma, then equivalent to or
poorer than chutes at high Vma.

Primary areas of interest on a PNL and OASPL directivity and spectral
distribution basis are presented in:

Figure 3-220 OASPL and PNL vs 6 at Vma - 2380 ft/sec

Figure 3-221 Spectra at 50, 90 and 1300 at Vma - 2380 ft/sec

Figure 3-222 OASPL and PNL vs 0 at Vma - 2620 ft/sec

Figure 3-223 Spectra at 50, 90 and 130* at Vma - 2620 ft/sec

The above two data sets exemplify the distinct difference in suppression
characteristics at mid and high velocity points.

For the first set at 2380 ft/sec, the OASPL distributions are similar at
all angles, particularly broadside and in the aft quadrant, while PNL is
similar at peak and aft, but much lover for the spoke in the forward quad-
rant. The 130' spectra bear out similar frequency distribution; but at 90'
and 50', the high frequency levels of the chute are much more predominant.
Distribution and level suggest a broadband shock cell noise influence at this
highly supercritical pressure ratio of 3.28.

At the higher Vma - 2620 ft/sec data point, PNL and OASPL distributions
are similar for the spoke and chute except near peak angle and in the far
forward quadrant, where the spoke is now noisier thaM the chute. At 130' the
spectra suggest this is a low frequency jet mixing noise phenomena; and at
50'. the difference is primarily in higher frequency bands, again associated
with shock-cell nois. at this high pressure ratio of 3.92.

As in the previ, is sp-actra at lower Vga, shock-noise was present for
only one of the desi)-a (not the samt one), suggesting a phenomena associated
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with the large variance in ventilation capability and its resultant impact on
mixing potential and base pressurization, effecting the potential to generate
strong shock-cell noise.

Element Type Study - Dual Flow of High System Area Ratio

This study extended investigation of varying element type from the
deeply ventilated chutes to nonventilated spokes, but now on a dual flow
nozzle with system area ratio of 1.92. Models 24 and 28 were used, Figure
3-224 photo and details in Appendix A, Figures 18 and 22. Model 24 was sim-
ilar to Model 16 of the previous study in that the annular suppressor has
36 elements, AR = 2.0 and RO = 0.716. Model 24 has a core plug of 0.7"
annulus height located in the retracted position. Model 28 used the same
filler inserts as Model 18 to convert the base chute model to the spoke con-
figuration.

The acoustic test matrix for these dual flow models was per Section
3.2.1, Figure 3-10 and Table 3-3, using the following cycle lines:

0 Wi = 0, 15 and 30% Wo

* DBTF/Inverted Dual Flow

0 AST/VCE

The following study results are included, selected from the DBTF/Inverted
Dual Flow and Wi - 30Z Wo cycle lines avi are representative of overall cycle
trends:

- Figure 3-225 Peak PNL
- Figure 3-226 Peak OASPL
- Figure 3-227 90* OASPL and PXL
- Figure 3-228 500 OASPL and PNL

Review of the data indicates:

* On the basis of peak OASPL, Figu:e 3-226, spokes attain a maximum
suppression level slightly greater than 12 dB; approximately 3 dB
higher suppression then the cautes. This maximum suppression level
is slightly under the 3.5 hPOSPL attained on Model 18 spoke/
turbojet systea; however, peak suppression levels on both turbojet
and dual flow systems are attained by spokes.

0 A si,.nificant margin of better performance by the spokes is ob-
servt d for the dual-flow system over the test velocity range. This
is cntrary to the results of the turbojet application, where
spokcs and ehutes were essentially equivalent except at high Vma
where, spokem became somewhat less effective than chutes.
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0 On the basis of peak PNL, Figure 3-225, a maximum suppression level

of about 10.5 dB is observed, which is significantly less than the
13.5 APPNL attained by turbojet spokes. In the mid-to-high veloc-
ity range, the spokes are from 0.5 to 1.5 dB more effective than

chutes for either cycle line presented. The span of increased
effectiveness of the spokes is not observed, as it was for the
spoke/chute-turbojet systems. At lower velocity and chutes (Model 24)
are slightly more effective than the spokes (Model 28).

* Review of the 90 and 500 data, Figures 3-227 and 3-228, shows in
most instances that the spoke loses its performance edge and is
either equivalent to or somewhat noiser than the chutes. This
again is somewhat dissimilar to the turbojet application where
spokes retained significant suppression advantage at broadside and
forward quadrant angles.

Element Type Study - Dual Flow of Low System Area Ratio

This third study of element type variation compares deeply-ventilated
chutes to ronventilated spokes, on a dual flow system of Ao/Ai - 0.65.
Models 33 and 35 were used (Figure 3-229) and detailed schematics of Appendix
A Figures 27 and 29 show chute and spoke nozzles, respectively. Model 33 of
suppressor area ratio - 2.5, from the NASA-Lewis/GE Duct Burning Turbofan
Program, NAS3-18008, (Reference 10) was adapted to the Cell 41 AnechoicFacility. Model 35 converted Model 33 to nonventilated spokes through appli-

cation of filler inserts, maintaining the same inner flowpath geometry.
Pertinent parameters for the models are:

Outer Inner

"Flow Flow Step System
Model El. No Area, Area Radius Area, Height Plug Radius AreaSNo. Type in.2 Ratio Ratio in.2 i n Location Ratio Ratio

- - - -" - - -- i , -33 36 17.21 2.5 0.783 11.12 1.034 Retracted 0.674 065i ~Chute•

7 1 035 36 117.21 2.5 10.783 11.12 11.034 IRetracted 10.674_ 0.65

Spoke I

Far-field acoustic testing was performed in the Cell 41 Anechoic Facil-
ity followin8 a tmtrix timilar to Sctton 3.2.1, Figure 3-10 and Table 3-3,
but expandetd to be more '.onslstent with the matrix of the Reference 10 DBTF
program. The following cycle aeries vas used:

* Ut O, 15 and 302 O o
* DBTF/lnverted Dual Flow Cycle
0 AST/VCE
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Figure 3-229. Element Type Variation, Dual Flow, Lov System
Area Ratio.
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Primary acoustic data for the two models, tested within the DBTF/Inverted
Dual Flow cycle matrix are presented and discussed in Section 3.4.2.2
(System Velocity Ratio Variation at Fixed Ao/Ai and Duct Suppressor Geom-
etry). It is shown that noise levels for systems of low area ratio, e.g.
Ao/Ai = 0.65, vary widely with cycle velocity ratio, Vo/Vi the inner flow
more strongly governs the overall system. Within this section, for isolation
of suppressor element type impact on acoustic performance, comparisons be-

tween the two models at fixed values of Vo/Vi = 0.6, 0.8, 1.0, 1.25, 1.5, 2.0
and - (no inner flow) are included in Figure 3-230 for peak PNL and in Figure
3-231 for peak OASPL, selected to be representative of all test data.

For the peak PNL data, again, only minor variances are seen, particu-
larly at low Vo/Vi. For Vo/Vi _> 1.5, a slight margin of better performance
by 1 to 2.5 APNL is seen for the spokes. On the previous study's spoke/chute
application to a dual flow system of Ao/Ai - 1.92, from mid-to-high Vma, the
spokes were also slightly better by 0.5 to 1.5 APNL than the chutes. For the
turbojet system at low-to-mid Vma, the spokes were better than the chutes by
approximately 2 APNL at 2000 to 2200 ft/sec, but at high Vma, the spokes
become substantially noisiec than their counterparts.

On the basis of peak OASPL, very little difference is seen between
spokes and chutes for any Vo/Vi ratio; the 'small variance that exists shows
no significant trend. If any distinctions had to b,! extracted from the data
they would be: a) At low Vo/Vi the chute (Model 33) is slightly noisier than
the spoke (Model 35), b) at intermediate values of Vo/Vi the two are near
comparable with only a slight margin of better chute performance at high V=,
and c) at the very high Vo/Vi the chute Is normally about 1 AOASPL quieter.
These results are compatible with those of the two previous studies where
turbojet application showed spokes and chutes almost the same except for the
small advantage by chutes at high Vma, and dual flow application showed the
spokes somewhat better at any Vma.

I With the small variance observed in suppression potential between
deeply-ventilated chutes and nonventilated spokes, acoustic performance may
not be the principle design consideration. Aerodynamic performance differ-
ences and mechanical implementation considerations will have a strong in-
fluence in the ultimate selection process. These aspects are discussed in
Volume 11I.

3.4.2.5 Treated Ejector Applicationu.

Treated WJector Application, •urboJet

The potential for idditional noise reduction of annular suppressed Jets
was evaluated through application of an acoustically treated ejector to a
basic turbojet propulsion nozzle. Models 16 and 19, as shown in figure 3-232
and in the detailed schazatics of Appendix A, Figures A-10 and A-19, Vere
used. The basiti Model 16 as described in Section 3.4.2.1 "Area Ratio and

Radius Ratio Variable, Turbojet" consists of a 36-chutt, Af - 2.0, R 0.716
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annular suppressor on a full-plug turbojet. The acoustic performance of the
basic segmented suppressor was expected to be enhanced, partially due to
physical shielding of the ejector shroud, but primarily due to energy absorp-
tion by the acoustico treatment within the wall. Highly segmented annular
suppressors redistribute acoustic energy to the higher frequency range where
it is more effectively absorbed by a broadband bulk absorbing material. The
basic design of the high-radius-ratio annular plug nozzle positions the
suppressor elements, and their accompanying segmented jet noise sources,
within close proximity of the ejector treatment. Peevious suppressed annular
plug/trE.ated ejector systems, Reference 4, were of Low radius ratio design
and possibly did not benefit from this feature.

The ejector's internal flow lines were designed for good aerodynamic
performance, using Yigure 3-1 and the guidelines of Reference 10 as follows:

0 Ejector inlet diameter to suppressor shroud diameter ratio (DEi/Ds)
of 1.11 was set, a fairly tight fitting ejector design.

0 Ejector axial positioning was set by the ratio of offset spacing to
suppressor shroud rv.dius (Xs/Rs) = 0.27; therefore, X. - 1.5 ia.

a Ejector length was established from practical system considerations
and limitations, with ratio of ejector length to ejector inlet
diameter (LE/DEi) set at 0.75 therefore, LE - 9.28 in.) This
terminates the ejector near the center plug's tip.

|* Ejector exit diameter (DEe) was set by equating exit flow area to
inlet flow area for proper flow filling within the ejector to pre-
vent flow separation and base pressure lois. The inlet area
considers ejector offset spacing and chute ventilation.

The acoustic treatment system design and material selections were based
on a combination of approximate theoretical considerations and available
experimental results. The bulk absorber material was selected to withstand
high temperature in the nozzle exhaust environment and to have good acoustic
abborption properties over a reasonably wide frequency range. Details of
construction and packing of the ejector system are shown in Figure 3-233.
Removable/repackable trays were used so that the bulk absorber material could

be refurbished if degradation occurred due to exposure to the highly tur-
buleut environment. Construction details are as follows:

Cavity depth was approximately 0.43 in, faced with 37% porous

perforated sheet metal using 0.045-in.-diameter holes on a straight
line pattern with 0.067 in. spacing between centers, 225 holes/
in. 2, 24 gage material.

* The cavity was lined with approximately 0.1-in. thick 95% porous
RETIMET NiCr Metal Foam, 60-70 cgs Rayls, co protect the ceramic
fiber absorf'r from degradation. The remaining cavity depth was
packed with KAOWOOL, a ceramic refractory fiber bulk absorber,
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compressed to 3 lb/ft 3 density. The material has good absorption
and insulation characteristics and is capable of sustained use at
23000 R without devitrifying.

A contoured bellmouth inlet was used for the static acoustic tests to
provide idealizcd flow to the ejector, thus eliminating the possiblity of an
extraneous noise source from flow separation around a sharp lip.

Acoustic tests were performed in the Cell 41 Anechoic Facility and
followed the matrix of Section 3.2.1, Figure 3-8, using conventional and high
TT cycle lines.

Peak PNL acoustic results, Figure 3-234, are shown separately as applic-
able to the conventional turbojet and high TT cycle lines, each relative to
the conical baseline. The lower part of the graph shows the suppression
level (APPNL) of Model 19 referenced first to the conical nozzle for overall
system suppression level, then referenced to Model 16 for gaging the effec-
tiveness of the treated ejector application. Similar data plots for peak
OASPL are shown in Figure 3-235. It is observed that maximum suppression
levels of 15.5 APPNL and 11.5 APOASPL are achieved at Vma z2100 to 2200
ft/sec. Peak PNL suppression drops drastically above and below the maximum
value, to 5 APPNL at high Vma, and 7 at low Vma. On a peak noise basis, the
ejector is very effective, accounting for 5.5 APPNL and approximately 4
APOASPL at low Vma and about 4 APPNL and 2 APOASPL at mid-Vma. At highest
Vma, however, the suppression trend is actually reversed and the ejector
application appears to generate greater noise than the nonejector system.

Comparing the turbojet cycle line to the high TT cycle line, basic
overall suppression levels relative to conical vary somewhat, particularly
"for APPNL at 1800 to 2100 ft/sec. However, suppression levels attributable
to the ejector alone are reasonably ccnsistent.

At 900, Figure 3-236, the Model 19 system yields suppression at all
velocity values. This system has a distinct advantage over the basic non-
ejector Model 16, particularly in the low and midvelocity region where the
system exhibits noise levels comparable to, or higher than, the baseline.
Suppression attributable to the ejector alone (plotted as Model 19 relative
to Model 16) shows levels and trends of AOASPL and APNL closely matching
those at peak angle.

Figure 3-237, 50* OASPL and PNL data, shows significant levels of sup-
pression with the ejictor relative to the conical baseline at all jet veloc-
ities. Suppression nttributable to the ejector is fairly well maintained
even within the forwird quadrant, particularly on a APNL basis in the low and
midvelocity range. t high Vma the loss of suppression and/or some noise
enhancement is seen, 4imilar to what occurred at the peak noise angles.

The overall powt- level data of Figure 3-238 show trends and ejector
levels of effeciivene;s paralleling those of the PPNL data. Low and mid-
velocities show signi-icant noise reduction relative to the basic system;
high-velocity suppression is negated and/or shows noise enhancement.
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The following are included for a closer look at noise distribution with
angle and at spectral composition.

0 • Figure 3-239 OASPL and PNL distributions at Vma z 2000 ft/sec

* Figure 3-240 Spectra at select angles at Vma 1 2000 ft/sec

m Figure 3-24L OASPL and PNL distribution at Vma =2625 ft/sec

0 Figure 3-242 Spectra at selected angles at Vma z2625 ft/sec

The first set of data at 2000 ft/sec reinforce the previous plots at
peak, 90, and 500. Suppression of the total system is significant at all
angles and suppression enhancement by application of the ejector is coneider-
able in magnitude and fairly uniform for all angles. The spectra, Figure 3-
240 illustrates that the significant change is in the high-frequency range,
as anticipated.

Figure 3-241 and 3-242, at the high V 2625 ft/sec point, also rein-
force the trends seen in peak, 90%, and 50 plots; the noise levels are
generally greater with the ejector applied. This is correct to some extent
for all angles, but principally in the forward and aft quadrants, On a
spectral basis, the higher levels exist primarily over the low and midfre-
quency ranges with a slight amount of high-frequency suppression still
achieved by the acoustic treatment.

Treaced Ejector Application, Dugl flow

This study extends the previous section's investigation to a dual flow
application. Model 24 is the base configuration (Figure 3-243 and Figure A-
18 in Appendix A) and the same 36-chute, AR - 2.0, R? - 0.716 annular sup-
pressor as the base turbojet Model i6, modified with a retracted inner plug
in lieu of the full turbojet plug, The inner stream is an annulus with a
step height of 0.7 in. and the system area ratio (Au/Ai) ini 1.92. The same
treated ejector as described in the previous section was applied (Figure 3-

fA43 and Figure A-30 in Appendix A), maintaining axial spacing and ejector
diameter to suppressor shroud diameter ratio (Model 36).

Acoustic teoting in the Cell 41 Anechoic Facility followed the matrix of
Section 3.2.1, Figure 3-10 and Table 3-3, using the cycle lines of:

i! Wi 15% 140

0 • Wi -30Z Wo

* DBTF/Znverted Dual Flow

i AST/VCE

333



110b

* 2400-ft S.L.
. A = 338 in.

2

+ + +

+ + + +
a 0 - + + + +

+ M

so -

C) Model 16 Pt I PR- it. 3

70 • Without Ejector TT 1330* R
O Model 19 Pt I V 3003 ft/ "c

With Ejector

+ Model 14 Pt a
CQnical PR - 2.74 TT 1320)* Vm - 2001 ft/e'c

40 s0 s0 100 120 140 too

120,

+ 4

+
+

S++

+ MO

+ 0a0

0 6-S0 0

Sa

so -

70
40 so so 100 1" 140 too

410LE TO IaT,. OEG.O

Figure 3-239. Impact of Acoustically Treated Ejector, Turbojet, OABS'L and
PRL Directivity, Vim w 2005 ft/sOc.

334



- ,. t- . -

~ 0 1
+ +

0 40

* '. °**'" * '• i

÷ fit fa.

* m p

, S t 4, *0O

* . .[I 4 mS

S,64o

.4 0

* U- , 8 - ,

/? * 3 t

,i3 , ml U

".- I' " . 3 0.

Ig 'I. po• •

• ,. g • • -- -0

2 •g k 2 I0 8 I

335

* m .t U



CO Model 16 PT 7 * 2400-ft S.L.

Without Ejector * AT - 338 in.
2

T0
OModel 19 Pr 7 0 PR = 3.90

With Ejector 7loc.. * TT - 1755o R 1 B

* V 2625 ft/sec (9

sos

en M

o -1

80

40 so) so 100 Ito 140 too

SQO

0 0

:140 tosoto0t 140 0

Akg1e to UIOtet dSt"S

,!

jFiguare -21 Impact of Acoustically Treated Ejector, Turbojet4 QABPL,

*1 338

an PK Dietiiy Vaw22 t&4.

S.e



Da 0

i.. to e a

S O 
a

Ol 
O6 ,M

S On ort~

IDIt

* I * I

0go 06

V: t 41
I" ~~# aa•# ,

00

t o .0 N

09 *

to 0034

O ui 3 6

t9 o 
.0

go337

DO • o0

0 9 0'6t t
il t1 .1•ei

E I iO• .. I
Ci 5O-.4

(20 ~. Si



PA

14

.0

V-4

fmI

~~338



A summary of PPNL and POASPL levels for the 15%, 30%, and AST/VCE cycle
lines is shown in Figures 3-244 and 3-245 along with suppression plots of the
ejector Model 36 relative to the conical and relative to the non-ejector
Model 24. The data indicate maximum system suppresaion levels of near 13
APNL and 14 AOASPL in comparison to the previous 15.5 and 11.5 of the turbo-
Jet system. System overall suppression levels do not seem to drop off as
rapidly at higher Vma as is the case with the turbojet/ejector application.

Suppression attributable to the ejector alone averages 4 tPNL and 4.5
AOASPL over a wide Vma range. This is dramatically different than the
ejector application to the suppressed turbojet where maximum suppression

values of 4 APNL/5.5 AOASPL at low Vma dissipated to noise enhancement at
high Vma.

PNL and OASPL data obtained from testing along the DBTF/Inverted Dual

Flow cycle line are shown in Figures 3-246, 3-247, and 3-248 for peak, 90,
and 50, respectively. Each of these figures also displays the suppression
curves attributable only to application of the eject .r, i.e., Model 36 rel-
ative to Model 24.

At 900, .noise reduction.die Lo ejector application is still present, but.
at r reduced level from that at peak noise angle, maintaining 2-4 APNL and
1-2 AOASPL across the test velocity range. This is also reduced from that
achieved in the previous turbojet/ejector study. Additionally, the overall
system suppression at 90o is somewhat less than the turbojet/ejector system.

At 50", signific.tnt overall system suppression is regained relative to

high Vma relative to -he shock-cell infest-ad conical no.zle, and to a lesser

degree at low VMa. Sippression levels attributable to the ejector alone are
from 2-4 4PNL and up ro 2 AOASPL. These levels are in concert with those
achieved on the tu:bojet/ejector aystem. Again, as at 90" and peak angle,
the additional suppression attributable to the ejector doeG not as readily
dissipate with Increasing Vma, as was seen with the turbojet/ejector system.

An overall p-3wet level data plot it also included as Figure 3-249, and
its trends fairly well paraUael those ot the PPN,/41.P'A L curves.

Figures 3-250 ar.d 3-251 are included as typical examples of PNL and
OASPL directivity and of spectral distributioop. The data shoun are from the
ASTiVCg .ycle line at V= - 2095 it/see aind were selected as representative
of trends for most ow the test points. Observations shou, as in the case of
turbojet/ejector dat, at lov to moderate velocities, suppression attributable
to the ejector perhidts at all angles, except the most aft, particularly on a
ViOL basia. The suppieseion is again attributable to acoustie absorption iv
the high-frequpaccy rigiim.
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Treated Ejector Application, Unsuppressed Coannular Nozzles

The two previous sections evaluated application of an acoustically
treated ejector to systems whose mid-to-high-frequency noise generation
region was in close proximity to the nozzle exit plane which is inherent in
the mechanics of highly segmented annular suppressors. The suppressor
systems' in themselves are mechanically more complex, heavier, and aerody-
namically poorer than unsuppressed coannular-noncoplanar dual plug propulsion
nozzles of equivalent thrust rating. The unsuppressed coannular nozzle on
its own, due to the nature of its high duct radius ratio, rnrmally affords
suppression relative to the conical nozzle. It, too, may have mid-to-high
frequency noise sour(es in near proximity of the nozzle exit plane. Loca-
tion, frequency distilbutioii, and noise levels are dependent on the physical
geometry of the system and aerodynamic cycle. The small annulus heights
associated with duct nozzles approach the characteristic dimensions (chute/
flow widths and heights) associated with segmented suppressors. Therefore.
application of a zreated ejector to -4 unsuppressed coannular system was
expected to possibly 'nhance acoustic performance sufficient to make the
system favoraULy competitive to the more mechanically complex and heavier
suppressor systems without ejectors.

For the study, Models 37 and 38 were used. Details are presented in
Appendix A, Figureu A-31 and A-32 and in Figure 3-252. Pertinent system
parameters were as follows:

tOuter Inner System .Jector
Ri Al Ar4/Ai Dgj, IDgtID3 Xg/Re IDE

NO. in.- -i n.Z in, . .

37 I.85.l 18.05 9.191.800 111.35 1.59 11.0 140 06,9 0.76
38 r0.926 8_C_ 8.46j,.00 _11.35 1_0.71 11.0 1.30 O.32 0.76

The basic coannular nozzles were frou the HAS-A-Lewis contract NAS3-19777,
.(Reference 11) and the acoustic ejector 44as from the NASA-Le~is contract

NAS$3-18008 (Reference 10). The ejector design and packtag wre *W~lar to that
dis.usseA. in Section 3.4.2.5.

The acoustic test matrix within the Cell 41 Anechoic Facility folloved
on abbreviacOe torm of Section 3.2.1 Figure 3-10 and Table 3-3 and basically
uses parts of the DSTF/lnvertod Dual Flow and the ASVTVCZ cycle UatrLces.

Acoustic result# art- presented as peak POL/OASML levels plus curves of
suppression relative to the conicta baseline in Figure 3-253, 90' OASPLIPttL
In Figure 1-254. 50* OASPL/IPL to Figure 1-255, and overall power levels in

Figure 3-256.. ligur, 3-253 shows that maximum suppression levels on a peak
OASPL basis approach 5 and 4, and on a peak i•OL basis approach 6.5 and 5 for
Models 38 and 37, respectively. At 90" and 50, aotse levels approac thuoae
of the conical 1aseline.
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To establish treated ejector effectiveness on its own, Figure 3-257
compares the peak PNL suppression trends of Models 37 and 38 (from Figure
3-253) to the levels established in Reference 11 for the basic nonejector
coannular noncoplanar systems (Configurations 5 and 6, respectively, from
Reference 11 for Models 37 and 38). This comparison points out that appli-
cation of the treated ejector to the system of higher duct radius ratio
(Configuration 6 and Model 38) increased peak PNL suppression levels to 6.5
dB, the ejector effecting near 2 PNL suppression on its own in the midveloc-
it) range. This level is considerably less than the basic 4 APPNL obtained
with the treated ejector applied to a suppressed turbojet or suppressed dual
flow system (Model 19 relative to Model 16 in Section 3.4.2.5 and Model 37

relative to Model 24 in Section 3.4.2.5). This is perhaps partially attrib-
utable to the ejector's looser fit to the base nozzle system (DEi/Ds - 1.3
fir Model 38 compared to 1.11 for Models 19 and 36). On the Model 37 system
of lower duct radius ratio, the ejector performs well at high velocity and
then loses all suppression potential at low Vma, to the point of increasing
system noise levels.

As ai ev-Tuation of the overall study goal (i.e., to determine whether
an unsup,..essed coannular plug system, through application of a treated
ejector, can achieve suppression levels similar to i suppressed annular
turbojet or dual f]•w system without ejector), Figure 3-257 also includes
peak PNL suprression curves of Models 16 and 24 of the previous two sections.
These were 36-chute, AR - 2.0 turbojet and dual flow suppressors$ respec-
tively. It is readily seen that, in the mid-to-high-velocity region asso-
ciated with engine cycles at takeoff and community power settings, the per-
formance of the ejectel uncuppressed coannular systems is well below that of
the more mechanically corpley multielement systems. In fact, little or no
suppression enhancement through ejector application is available at high
velocity for either system studo.ad.

To exemplify the ror u.etailed noise characteristics of this type of
system, a set of PNL and OASPL dirtct'-ity and spectra plots is included.
Figures 3-258 and 3-259 ar• at Vma 2060 ft/sec and show (a) PNL and OASIL
distribution@ in cocert with the previous peak, 90'. and 50s plots, (b)
suppcession is slightly greater for the higher duct radius ratio model at
peak angle a.4 toward the 'nlet but at 90" suppressso., for both models ia
nil, aud (c) spectra distributions el.ow suppression relati'.a to the conical
Oozzle is primirily in the midfrequ-ncy range.

3.4.2.6 Sumary of Suppression Levels

The preceding sections Lave described parametric test data which Wre
useA co establish the suppression levels for several types of nozzle config-
urations. Suppressor and system aerodynamic and geometric parameters eval-
uated experimentally included the follovingt suppressor area .atio, radius
ratio, flow management (system velocity ratio, weight Flow ratio, and area
ratio), inner stream geometry, elemert number, elev)nt type, and treated
ejectors on aultielement and usulppreased inverced-coannular-flow nozzle.
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Figure 3-260 summarizes the typical suppression levels measured while
testing half-span and full-span suppressors. Suppression levels are quoted
relative to the conical reference nozzle. The configurations chosen in
general are those which attained the highest suppression levels in their
respective nozzle families.

Full-span suppressor designs which have static suppression levels in

excess of 14 PNdB have been demonstrated. The 36-chute nozzle with acous-
tically treated ejector and 36-spoke configurations attained the highest
suppression levels. Half-span suppressors implemented on the outer stream of
dual flow nozzles resulted in measured peak suppression levels of 10 to 13
PNdB. The AR = 2.0 36-chute nozzle incorporating an acoustically treated
ejector attained the highest suppresion. In general, suppression levels
attained with half-span suppressors were slightly less than similar full-span
suppressor designs. These slight acoustic differences dictate that aero-
dynamic performance and suppressor weight must also be considered in any
ranking procedure for determining the best suppressor design. This procedure
is discussed in Volume III of this report.

3.4.3 Tests to Evaluate the Influence of Simulated Flight

This section will present the results of a series of free-jet scale
model tests on baseline and suppressor nozzles. All free-jet data have been
transformed using the method presented in Reference 12. The transformation
is accomplished by extracting the static directivity of the noise after
correcting for refraction, turbulent scattering, and absorption effects and
then employing a suitable multipole source decomposition to evaluate the
proper dynamic effect.

3.4.3.1 Simulated Flight Investigation for Several Configurations

Eight nozzles, ranging from simple to complex geometry, were tested to
determine their static and simulated flight acoustic characteristics. These
nozzles were tested on the JENOTS free-jet facility (Reference 12). The
model descriptions and test matrices are discussed in Sections 3.1 and 3.2.1,
respectively. Photographs of the suppressor nozzle families evaluated are
summarized on Figure 3-261. The ensuing discussions focus on answering four
k•vy tv1ut.•1 hg,&1. I .4..

a Do suppressor nozzles provide a reduction in peak PNL level in
flight relative to a conical nozzle? If so, is the magnitude of

suppression equivalent to, greater than, or less than what is
observed statically?

* Are the velocity indices of suppressor nozzles similar to those of
a conical nozzle?
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0 What are the effects of flight on the spectral shapes of a sup-
pressor nozzle?

* Is there a noise reduction at the 900 acoustic angle?

The level of peak PNL suppression as a function of velocity was estab-
lished for both static and flight conditions by subtracting the normalized
PNL levels presented on Figure 3-262 for select suppressor nozzles from those
of the conical nozzle. The resulting suppression levels are summarized on
Figure 3-263. The flight peak noise suppression of the 0.85-radius ratio
plug nozzle is equivalent to the static suppression. An improvement of 1.5
to 2.0 APNdB during flight occurs for the 0.789 radius ratio plug nozzle.
The static suppression of each of the three chute nozzles was equivalent,
whereas in flight a decrease occurs. Similar comparisons for 104-tube and
104-hole nozzles over a limited test matrix show flight and static suppres-
sion levels to be equivalent.

Table 3-6 suizarizes typical static and flight peak noise suppression
levels at a jet velocity of 2500 ft/sec. For baseline systems such as plug
nozzles, the flight levels of suppression are near equivalent to the static
levels and for the tube nozzle they are equivalent. The chute nozzles
exhibit an approximate 3 PNdB loss of suppression in flight.

Peak OASPL and 90* PNL levels as a function of velocity are sumarized
on Figures 3-264 and 3-265, respectively. The peak OASPL reduction from
static to flight is greater than on a PNL basis. The differences are con-
figuration dependent. For example, chute nozzles exhibited a zero to I-PNdB
increase and a zero to l-dB decrease on the basis of OASPL. Differences
between peak PNL and OASPL noise trends are attributed to frequency-dependent
spectra changes from static to flight. A greater reduction in OASPL indi-
cates that low frequencies realize more reduction in flight than high fre-
quencies; 90' PNL static and flight levels are within ±1 PNdB for the conical,
0.789 plug and 104-hole nozzles. The 0.85 radius ratio plug nozzle PNL
levels increase from zero to 2 dB depending on the condition being compared.
This increase is attributed to shock-cell noise dominance and is discussed in
Section 3.4.3.2. The 36-chute nozzles show an increase in noise level of 3
to 4 dB, a trend which differs significantly from the other nozzle families.

PNL directivity characteristics for each of the nozzles are summarized
in terms of velocity indices (NO) calculated by using the folloving equation:

NO ___ static SPLf ht- 10 log (1 -M coo )

log %J Va/c
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Table 3-6. Sumwry of Nozzle Static and Projected Flight Peak PUL

Suppression Characteristics.

* Suppression Levels are Relative to a Conical Nozzle

* 2400-ft Sideline
a V -2500 ft/sec

* AT - 338 in. 2

!! Suppression Level, dB

Model No. Configuration Static Fligt

39 Plug Nozzle - 0.789 Radius Ratio 1.3 3.0

40 Plug Nozzle - 0.85 Radius Ratio 2.3 3.7

46 8-Lobe Nozzle 5.6 5.6

41 AR - 2.5 36-Chute Nozzle 13.5 10.9

42 AiR- 2.5 36- tute Nozzle vit~h Auxillary
?IOU 1-2.5 9. 4

44 104-Tube Notzle 12.0 12.0
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Velocity ±pdices were calculated for jet velocities ranging from 1800 ft/sec
through 2600 ft/sec, as sumnarized on Figures 3-266 through 3-269. Data at
free-jet velocities of 150 and 275 ft/sec were utilized. The velocity index
parameter was not sufficient to collapse the data into one set of indices
which is correct for all configurations. Plug nozzles and conical nozzles
have similar indices in the aft quadrant. In the forward quadrant the effect
of shock-cell noise is apparent. In general, for the conical nozzle (Figure
3-266) as pressure ratio increases, forward quadrant indices become negative
which indicates a noise increase in flight. The suppressor nozzles exhibit a
velocity pattern which is distinctly different from the conical nozzle and
varies with nozzle type. Chute nozzles in particular show a sharp decrease
in velocity index beginning at an acoustic angle of 130%.

The velocity indices are compared on Figure 3-270 for several configura-
tions. The tube nozzle and plug nozzles have velocity index patterns of
similiar shape and level. The conical nozzle deviates from these configura-
tions, particularly in the forward quadrant, due to the presence of shock
noise. Velocity indices of the chute nozzle configurations are significantly
less than that of the other configurations at 1300. Examination of the
spectra should provide some insight into the cause of this variation.

The spectra presented on Figures 3-271(a) and 3-271(b) are at 1300 for
both the chute (Model 41) and tube (Model 44) nozzles. Three spectra are
presented for each configuration: static spectra and wind-on spectra before
and after transformation. The reduction in the low frequency portion of the
spectra is within 1 dB for both the chute and tube nozzle configurations. In
the high frequency portion of the spectra, dominated by the premerged noise,
both nozzles have a slight increase in level. However, the absolute level
relative to the low frequency portion of the spectra is extremely different.
The transformed spectra of the chute and tube nozzles are compared on Figure
3-272. There is a 10 dB difference in the high frequency portion of the
spectra. The dominance of the high frequency noise is the reason for the lack
of flight effect on these chute nozzles.

In addition to being analyzed on a velocity index basis, the directivity
patterns were also analyzed on the basis of PNI. suppression level as a
function of angle for several jet velocities. Jet velocities of 2200 ft/sec
and 2600 ft/sec are discussed in detail.

The acoustic suppression levels in terms of APNL versus angle are sum-
marized on Figures 3-273 through 3-275. Static and flight suppression
levels, Figure 3-273, are equivalent for the plug nozzle. The chute nozzles,
Figure 3-274, exhibit a loss of suppression in the aft quadrant and generally
maintain suppression in the forward quadrant. The 104-tube (Model 44) and
104-liold (Model 45) nozzles, Figure 3-275, show essentially no change in
suppression level relative to a conical nozzle (Model 47) in flight.

A summary of PNL, OASPL, and spectra comparisons fur each of the con-
V¢qurations is presented in Figures 3-276 through 3-301 for jet velocities of
SJ0 and 2000 ft/sec. Four acbustic angles of 50', 90, 110, and 130 were
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Figure 3-272. A Comparison of the Flight Spectra for
104-Tube (Model 44) and 36-Chute
(Model 42) Nozzles.
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Characteristics (Models 41 and 42).
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chosen for presentation. The following comments are pertinent for each of
the suppressor families. The plug nozzles (Models 39 and 40), Figures 3-276
through 3-281, have very similar directivity patterns. The general simulated-
flight trend is a significant noise reduction in the aft quadrant, no change at
90, and a slight increase (on the order of 1 PNdB) at select angles in the for-
ward quadrant. At 500, the spectrum shape (Figures 3-278, 3-279, 3-282, and
3-283) is dominated by shock-cell noise; an increase of the peak spectrum level
of 3 dB is observed. This corresponds exactly to the level which would bu pre-
dicted by using 40 log (1/1 - M cos 01].

The 900 spectra, Figures 3-278 and 3-279, show no change for the 0.85 radius
ratio configuration, Model 40. The 0.789 radius ratio plug nozzle (Model 39) 90*
spectra, Figures 3-282 and 3-283, has a modest low-frequency reduction with an in-
crease occurring in the high frequency portion of the spectra. The spectra
have a significant low and midfrequency reduction with no change in the high
frequency portion of the spectrum.

The PNL, OASPL and spectra characteristics of the three chute configura-
tions (Models 41, 42, and 43) are summarized on Figures 3-284 through 3-295. The
patterns are distinctly different than those of the plug nozzle configurations.
In general, aft angle suppression is observed for el > 130o with level vary-
ing anywhere fro, 1 to 4 PNdB depending on the chute configuration. However,
for 01 1 1300, the static and flight levels are generally within 2 dB. These
trends are supported by the spectra comparisons presented in Figure 3-286.
At 900 there is a .ow-frequency reduction but it is negated by an increase in
the high-frequency noise. The trend at 1300 is significantly different, as
previously discussed. Low-frequency reduction on the order of 5 dB occurs;
however, thia again is negated by the increase in high-frequency noise. The
relative levels of the high-frequency and low-frequency noise is the reason
for a lack of flight effect.

The directivity and spectra characteristics of the 104-tube (Model 44) and
104-hole (Model 45) nozzles are presented on Figures 3-296 through 3-301. The
changes in directivity pattern from static to flight are similar to those for
the plug nozzle configuration. There is a significant reduction at the angle
of maximum noise. At 90, a modest reduction of 1 dB occurs with equivalent
static and flight levels in the forward quadrant. Spectra comparison at 50O
"shows static and flight levels to be equivalent in the low frequency portion
of the spectra with an increase in the high frequency portion of the spectra.
At 900, significant low-frequency suppression and a slight increase in the
high-frequency portion of the spectra is observed.

Studies to evaluate the influence of simulated flight (using the free-
jet technique) have established that a comon set of velocity indices may not
be established for both baseline and suppressor nozzles. The chute nozzles
evaluated have shown a 3-PNdD lose in in-flight peak noise suppression due to
dominance of the high frequency portion of the spectra (which realizes only a
minimal flight effect). The minimization of high-frequency noise is con-
sidered to be a critical design parameter for a suppressor nozzle to realize
a reduction of noise in flight.
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3.4.3.2 Shock Noise Studies

The effect of shock noise, both statically and in simulated flight, was
explored for five nozzles: a conical nozzle (Model 47), a 0.85 radius ratio plug
nozzle (Model 40), an R = 2.5 36-chute nozzle (Model 41), a 104-tube nozzle
(Model 44), and a 104-hole nozzle (Model 45). The shock noise characteristics of
the 8-lobe nozzle (Model 46) are Jiscussed in detail in Reference 7.

According to the Harper-Bourne Fisher (HBF) theory (Reference 24) the
OASPL, if dominated by shock-cell noise, should be only a function of the
pressure ratio parameter 8, given by the following equation:

OASPL's at angles of 400 through 90* are presented as a function of 0 on
Figure 3-302 for the conical nozzle (Model 47). At angles such as 40, the
shock u•ise appears to be dominant; this is reflected in the collapse of the
data, for all temperatures, close to a line which varies as 84. Transformed free-
jet data are also presented on Figure 3-302. In general, the transformed
results show an increase in noise due to the dynamic effect. The increase in
level is a function of angle and S. However at negative values of 0 this
noise increase in flight is not as apparent. The approximate level of in-
crease is predicted by 40 log 11/1 - Ma/c cos 61] in the 0 range where shock
noise is clearly dominant.

Similar static OASPL comparisons were made at 50" for the 0.85 radius
ratio plug nozzle (Model 40), AR - 2.5 36-chute nozzle (Model 41), 104-tube nozzle
(Model 44), and 104-hole nozzle (Model 45). The plug nozzle did follow the class-
ical B4 line, but the other suppressors did not show a significant trend. Spectra
comparisons for the four nozzles are shown on Figure 3-303. The conical and
0.85 Rr plug nozzles exhibit the spectrum shapes indicative of shock noise
whereas the multielement suppressors do not.

Spectra •.xaons for the 0.85 Rr plug nozzle (Model 40) at pressure ratios
of 2.5, 3.0, ond 3.5 are presented in Pigure 3-304. The spectra for the three
velocity conditions at a preesýire ratio of 2.5 collapse in the frequency
ran~o of 400 < f 4 5000 Hz. Spectrum levels below 400 Ht increase as jet
veleeity ticreeages. However, the frotjuency dependent trend is not repeated
ý,L pr ure ratlo8 of 3.0 and 3.5. Thit spectrum shapes are observed to be
equivalent and suggest the spectrum is dminated by shock noise rather than
jet vtiase. OASPL directivity comparisons were Also made in a silatsr manner
and are presented on Figure 3-305.

Shock noise dominates at a pressure ratio of 2.5 up to 70", at a pres-
oure ratio of 3.0 up to 90", and at a pressure rtcio of 3.5 up to 100'. In

general, as nozete pressure ratio is Increased and total tevperature is held
condtant, the region of shock noise dominance will extW Into the aft quad-
rant.

-...... ...... .. . .- •... .. . ..-.... ....

•. ,.•, = ... . . :• , . • ., , • , ,. ,•=.- . . . • - ,- , .,i ,' ' " " .• • . . ... . . •.,.,. •, ., . .;: ,, •,.:• ,• . , ,,.. : ', ,i , *' . '.'.•i• •'::



r-4 _ _ _ _ _ _ _ -

o 0

Cca

r-4 ba

U bo 0
ol~ 0 U -4

Co tio 0

0 t
-

00 N

0 ý

0 0

> to lo

0 0

U Ip

tA FLO%

Uk 0 6 t A c

406



Q Conical Nozzle -Mod~el 47

<> AR = 2.5, 36 Chute - Model 41

0 0.85 Radius Ratio Plug Nomzle - Model 40

X 104-Tube Nozzle - Model 44

90

0
0

$4

-0 0
ýO 80 00

80 00000

0.- 0 70O 00 0o

0 0
•o> 08I:: v0 x 000

xxx
r0 0

2 x
S.~~ 2400-ft Sidel.de x

i • •AT = 338 in.

Va. = 2400 ft/sec

4 Static

• . O0100•. 10) 000F eFrequency, Hz

SFigure 3-303. Summary of 50e Spectra Characteristioc.

;,t

407

,........................................--'"..... " • -.



* 24(0-ft Sideliuo
A,, . 338 in.2

0 Statio

el 50*

9 Oo

go - 08 oa T/. T ) V.(t*c

/ 0 31 2.5 Iooo is"

70 - 6600

00

00

40" °°L I III I, 1. ,.1 ta .I

Q0
8

9809

080

00 33 10 Iw to035 ,4 U .* ,,oo
t3

2 0

0

• S l .190 1 0.J00...0 •I &J

Fgigure 3-304. U.85 Radius Ratio Plug Hosple (Model 40)

50 Spectra at Constant Pressure Ratio.

408



100 TT 10000 R
*2400-ft S.L.T

A= 338 in.2  O 10RT ZSAT - 1690 R10 *Static 2.0

0900

0

801

110

L ToP 03.0

io00 0~ 8

0 0
o 90 0

0TT - 1 0 0 0 R
0TTwl14 0 00R

80-

1103

100 0 0

8 oTTU 10000*
o TTr 14000

A~ 
-A . , ~

so0~ 40 50 60 70 80 90 100 110 120 130 140 150 160

Figure 3-305. 0.85 Radius Ratio Plug Nozzle (Model 40) Directivity at
ioonstunt Pressure Ratio.

409



s 5o
* 2400-ft S.L.

0AT = 338 in.2

aI0 0 * Static
~4 0

b o
30

20-

S2 C I I I *t I I , I. I I I

0 30 40 50 60 70 80 90 100 110 120 130 140 150 160

Bit Angle to Inlet, degrees

Region of Shock600i8s• 0Noise Influence

600

, -i
950 z0

ýYm 2T-p 10a. -53/e0
40 :4077 1646

-to 3.4377 16370

<> 2,4136 1622 )

°
X• 1. 9906 1624

30 1.7403 1609

100 1000 10.000

frequaw$c"y, Wtl

Figure 3-306. The Eflact of Pressure Ratio Variation

on Lhe Diroctivity and Spectra Charac-

toristics of a 104-Uole Nozzle (Mddel
45).

410

411t



The 104-hole nozzle (Model 45) was chosen to illustrate the influence
of shock noise on multielement suppressor nozzles. The results of this study
were distinctly different than those observed for the conical (Model 47) and
plug (Model 40) nozzles. Directivity and spectra comparisons are presenited
on Figure 3-306.

Theldirectivity comparisons were made for five conditions where jet
velocity varied from 1609 ft/sec to 1646 ft/sec. However, nozzle pressure
ratio varied from 1.74 through 4,07. If the 104-hole nozzle was dominated by
shock noise, the data would not collapse when normalized by the 10 log Fs
(To/Tsm)w- 1 factor. However, the levels for all five points do collapse
within a ±1 dB band. This implies that the directivity pattern of this
nozzle is not dominated by shock noise. Spectrum wise (8, = 50*), a varia-
tion with pressure ratio is observed in the frequency range of 400 < f < 6300
Hz for the 3.43 and 4.0 pressure ratio conditions, suggesting a slight in-
fluence due to shock noise in spite of the apparent collapse of the OASPL
data. However, at low pressure ratios the data collapse when normalized by
this parameter.

The major results of this exploratory study show that shock noise dom-
inates the forward quadrant noise levels at supercritical pressure ratios,
that the region of shock noise influence increases at pressure ratio is
increased and temperature is decreased, and that the shock noise levels
follow a 04 slope and are amplified in flight according the 40 log
till - ? / cos OT] based on transformed free-jet data.

Plug nozzles also have significant shock noise; however, on an absolute
level it is less than for a conical nozzle. Complex suppressor nozzles, such
as the 104-hole nozzle, do not have a significant shock-noise component.

3.4.4 Laser Velocimeter Results

Laser velocimeter (LV) measurements were conducted on baseline and sev-
eral suppressor nozzles to determine if the mean velocity decay character-
istics were similar for baseline and suppressor nozzles, and to determine if
suppressor turbulence intensity levels were equivalent to a conical nozzle.
The effects of geometric changes on the mixing characteristics of exhaust

nozzles were also examined. These geometric studies included varation of
element type, single versus dual flow, suppessor area ratio variation and the
influence of a treated ejector. The baseline nozzles were tested on the
JENOTS facility and the suppressor nozzles were tested in the anecohic chamber.

Laner velocimeti r measurements were also taken on several baseline and
suppressor configuralions in a freejet on the JEW0ffS facility to establish
the change in mixing characteristics with the addition of external flow.

The baselhe noroles evaluated include a conical nozzle (from.Task 4,
Reference 12), 1 0.6; radius ratio convergent-divergent plug nozzle (Model 2),
and an Ao/Ai - .0 ctlanar-coannular nozzle (Model 6). Mean velocity and
turbulence intessity profiles for the first two configurations were compared
extensively wit' the. retical predictions in Section 4.5.8 of Reference 7 and
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will not be repeated here except for selected comparisons. The results of this
study are presented as mean-velocity decay characteristics and turbulence inten-
sity levels for several baseline and multielement-suppressor nozzles. The test
matrix and data reduction/acquisition were discussed in Sections 3.2.2 and
3.3.2, respectively.

Figure 3-307 summrizes mean-velocity decay characteristics for the conical
(Reference 12) and two inverted-flow, coplanar-coannular nozzles (Models 6 and
7). The coannular data are normalized with respect to the area and the calcu-
lated isentropic velocity of the outer flow. The peak velocity decay is en-
hanced by the inverted-flow cycle in the 3.0 < X/D8 < 11.0 region reduced at
X/DO < 11 for the range investigated. TurbUlence intensity levels at the
loca~ion of maximum mean velocity are summarized on Figure 3-308. Turbulence
levels are approximately 3 to 4% in the region where the measured velocity is
equivalent to the isentropic velocity. The maximum turbulence levels produced
by the coplanar-coannular nozzles are observed to occur closer to the nozzle
exit plane than was the case with the conical nozzle. Peak turbulence levels,
which in general do not occur at the same location as the peak mean velocity,
are summarized on Figure 3-309 for the conical nozzle and also for the 0.65
Ao/Ai coplanar-coannular nozzle (Model 7). The peak turbulence level of the
coplanar-coannular nozzle is approximately 2% lower than for the conical
nozzle and occurs nearer to the nozzle exit plane.

i I The AR - 2.0 coplanar-coannular nozzle (Model 6) was also tested to deter-
mine the influence of velocity ratio on the centerline mean-velocity decay char-
acteristics. The studies were conducted with the inner and outer streams both
operating at stagnation temperatures of ambient and 1500* R. The results are
summarized on Figures 3-310 and 3-311. As velocity ratio (Vo/Vi) increases,
the decay rate of the mean velocity is substantially reduced. The increase
in stagnation temperature also enhances the velocity decay rate, when com-
pared to ambient conditions.

Mean velocity and turbulence Intensity levels were established for sev-
eral single and dual flow suppressor nozzles. In general, the segmentations
of the exhaust plume caused a more rapid decay of the mean velocity when com-
pared to the unsuppressed case. The downstream, postmerged, mean velocity
characteristics of the suppressor nozzles are very similar to the baseline
configurations.

The mixing characteristics of two typical turbojet suppressor nozzles [AR
- 2.0 36-chute (Model 16) and AR - 2.0 36-spoke (Model 18)) are sumearized on
Figures 3-312 and 3-313. Tie data were obtained by radial traverses on a chute
or spoke centerline. Measured data for the 3.56 conical nozzle (Reference 12)
is presented at locations where it is available. The spoke and chute nozzles
both have very similar mean velocity profiles at axial locations in the X/D
range from 0.4 to 24. The turbulence intensity levels are very similar, with
the maximum variance occurring at XID < 1.0. When compared to the conical
nozzle, both configurations display a significant reduction in mean velocity
up to an X/D of 8.0. At X/D - 16, the peak velocity level of the conical
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nozzle is actually less than the suppressor nozzles. The baseline and sup-
pressor nozzles are equivalent at an XD - 24.

Comparison of the spoke (Model 18) and chute (Model 16) mean velocity
and turbulence profiles indicate only small differences between the configur-
ations. The comparison of acoustic data for these configurations was presented
in Section 3.4.2.4. The peak noise levels at the comparable cycle conditions
for the plume are found to be essentially equivalent (which is supported by the
similarity of the mean velocity and turbulence intensity comparisons).

Mean velocity and turbulence intensity measurements were made to deter-
mine the influence of suppressor area ratio variation. Models 22, 24 and 27
were utilized to perform this study. They were dual flow nozzles incorporat-
ing half-span suppressors having 36 elements. The acoustic data comparisons

for these configurations are presented in Section 3.4.2.1. The outer stream
velocity was 2400 ft/sec and the inner stream velocity was 1200 ft/sec.
Figure 3-314 summarizes the decay characteristics of the peak velocity at
whatever radial location it occurs. The AR - 2.5 nozzle configuration (Model
22) causes the most rapid decay in mean velocity. It is interesting to note
that noise reduction potential was generally enhanced with excessive suppressor
area ratio which in turn exhibited the more rapid velocity decay rates.

Detailed mean velocity and turbulence profiles are summarized on Figures
3-315 and 3-316, for several axial locations. The trend of noise with sup-
pressor area ratio variation is best illustrated by the comparisons at X/D
2.0 and /ID a 4,0. Minor diffevences in the turbulence intensity profiles
are also apparent, howvver, they cannot be related to the noise generation
process on a quantative basis.

A study was conducted with Model 24 as the base configuration and with
Model 36 to determine the effect that adding a treated ejector has on the
mean velocity and turbulence intensity profiles. These comparisons are sum-
mtrined on figure 3-317. The eomparisons at X/) * 2.0 Are at the exit plane
of the ejector. The 4ddition of the troated ejector resulted in only a minor
change in the slh•pe and level of thU mean v•elocity and turbulence intensity
profilos at the needle exit plane. A similar conclusion is drevn from the
moaoure~ents tade at the other axial locations. The acoustic comparisons
pre)entted iti Section 3,4,2.7 showd a suppression improvement of 3-4 PNtd at
the mtaximum noise angle. Since mean velocity and turbulence intensity pro-
fileo vire shcin to be similar, the beneficial of fet of the ejector can
probahbly be attributed to physical shielding and acoustic treatuent effective-
ntes.

Ntasureaents uvre also made on the JLNOTS free-jet facility to determine

the change in the mean velocity and turbulence intensity profilcs in sion-

lated flight. The characteristics are discussed below for a conical nozzle
(Reference 12), plug nozzle (Model 40), chute nozzle (Model 41), and a 104-
tube nottle (•Moel -4).

The peak wean velocity decay +a~racterlstics for the conikii-i i
(Reference 12) a•re *uwurtýý-O on Figure 3-318. 1he r•-aurmnaatft uh-OV a $1ow-
tIng dour of the mean velocityv decay rate with ncrt-attiag tioulatd airer ft
velocity (V a/c s din.c¢•l• Rofertmze -29. A sia~i~llr type of co~mwism
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Figure 3-315. Impact of Suppressor Area Ratio on Radial Mean Velocity
and Turbulence Intensity Profiles.
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for the 0.85 R/R plug nozzle, Model 40, is presented on Figure 3-319. These
data were obtained by performing a series of axial traverses at the nozzle
centerline and at normalized radial locations. The trends are similar to
the conical nozzle.

The 8-4obe nozzle (Model 46) static and flight mean velocity decay charac-
teristics are summarized on Figure 3-320. The rate of velocity decay has
increased significantly relative to the conical nozzle at X/D < 14. The region
of maximum mean velocity gradient (0 < X/D < 4.0) appears to be only slightly
sensitivity to forward flight. In the axial region of 4.0 < X/D < 15 the
velocity decay rate of this configuration is enhanced rather than decreased
as was the case for the conical nozzle. The static and flight peak tutbu-
lence intensity levels for this configuration are also summarized on Figure
3-320. The turbulence level near the nozzle exit plane is slightly increased
in flight very near the nozzle exit plane (X/D < 2.0) and slightly reduced at
other axial locations. The peak turbulence intensity levels also occur very
near the nozzle exit plane.

Select measurements were made on the AR - 2.5 36-chute nozzle (Model 41).
The mean velocity decay characteristics for this configuration, based on a
series of axial traverses directly behind a flowing chute centerline at two
radial locations, are summarized on Figure 3-321. The decay of the peak
velocity near the nozzle exit plane is insensitive to flight. However at
X/D > 12 where the segmentized jets have lost their individual identity (or
coalesced), the characteristics exhibited are the same characteristics ob-
served for the conical nozzle. Mean velocity and turbulence intensity levels
for a 104-tube nozzle Model 44 are summarized on Figures 3-322 and 3-323.
The measurements were made along the centerline of the nozzle and at the
centerlines of inner, middle, and outer tubes. The centerline static and
flight mean velocity comparisons show a trend identical to that exhibited by
the AR 2.5 36-chute nozzle (e.g., influence of free-stream velocity is
observed up to X/D - 7, while beyond this point the velocity decay rate is
slowed down). The mean velocity levels of inner and middle tubes are essen-
tially identical up to X/D of 3 with a slight divergence of 2% to 5% between

X/D of 2 and 6. The decay characteristics of the outer tube are more sensi-
tive to free-stream velocity. Turbulence intensity levels are compared on
Figure 3-223. The maximum turbulence intensity levels occur in the jet plume
of the outer tube in the region of maximum mean velocity gradient. The
levels are similar to those of the conical nozzle. In flight, minimal change
in turbulence inensity levels occurs near the nozzle exit plane; in the
region of the coalesced Jet, the levels are reduced.

The prior data comparisons support the following conclusions. Suppres-
sors generally cause the increase in mean velocity decay until the velocity
reaches 60% or less of the fully expanded isentropic velocity. This point
generally occurs within 10 to 15 equivalent nozzle diameters and is a func-
tion of the suppressor design. The axial location of peak turbulence inten-
sity is a function of nozzle type, and generally occurs in the region where
the mean velocity gradient is a maximum. For example, the peak turbulence
intensity levels for the conical nozzle occurred at 6 < X/D < 8 whereas the
peak turbulence intensity level for the chute nozzles occurred at X/D < 0.4.
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In general, for a complex multielement suppressor nozzle the region of peak
turbulence intensity was found Lo occur within one equivalent nozzle diameter
for the configurations evaluated. Although axial locations of peak turbu-
lence intensity levele are a function of nozzle type, the absolute level
ranges from 18 to 22% and does not correlate with exhaust nozzle type.

In simulated flight, the velocity decay rate for the conical nozzle was
retarded (e.g., decayed at a much lower rate). The suppressor showed very
little sensitivity to forward velocity with the exception of the downstream
coalesced jet. Turbulence intensity levels were found to decrease in the
coalesced jet in-flight compared to static. The levels near the exit plane
were found to be generally comparable.

Overall, the laser velocimeter was demonstrated to be extremely useful
in determining the differences in aerodynamic mixing characteristics of base-
line and complex multielement suppressor nozzles. The aerodynamic data, in
conjunction with the acoustic data bank, may be utilized to aid in the va1i-
dation of current and future jet noise analytical prediction models.

3.4.5 Ellipsoidal Mirror (EN) Testing

This section presents the results of ellipsoidal mirror (EM) source

location measurements made on several scale model suppressor nozzles during
the Task 3 test program. EN testing was conducted on a total of twenty-two
differeoat nozzle configurations. Of these, fourteen configurations were
tested at the jet noise anechoic facility using the 34.654-inch diameter
deep-dish mirror, and eight were tested at the JENOTS free-jet facility,
Susing the 1-inch-diameter shallow-dish mirror. Test setup and data acqui-

sition weres described in Section 3.3.3, and Appendices D and E describe the
EM developments.

3.4.5.1 Data Analysis

The EM test matrix was planned to allow evaluation of several geometric
and operating parameters by comparison of measured source distributions for
speci•t, data points. The results of these comparisons are presented in this
section. The source distributions are expressed as Strouhal Number (f Deq/Vo)
versus normalized axial distance (Xpeak/Deq), where Doq is the equivalent
circular diameter based on nozzle 4rea, Vo is the idea ly expanded jet veloc-
Ity aod XpeAk is the peak source location for a given frequency, f. For dual
flow configuratLons, Deq is calculated from total area (inner plus outer) and
Vo is based on the higher velocity (outer) stream.

Integral closure checks were made for all EM data points in the test
program. Typical results are shown in Figures 3-324 through 3-328 for mea-
surements made it% the anechoic facility with the deep-dish mirror. Note that
tne data obtained with 2-sec integration time yield•d the best results, even
at lower frequencies, and was subsequently used to c:ompletely define the
majority of the source distributions.
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Figure 3-329 shows a comparison of peak source distributions for 20-,
30-, and 40-shallow-chute, dual-flow suppressors (Models 30, 31, and 32).
While there is no significant difference between the 30- and 40-element data,
high-frequency sources for the 20-element configuration peak farther downstream
of the nozzle exit.

A comparison of peak source distributions for 36-chute, dual-flow sup-
pressors with area ratios 2.5 and 3.0 (Models 33 and 34) is shown in Figure
3-330. The source distribution for area ratio 3.0 is seen to peak farther
downstream at all frequencies.

Figure 3-331 shows a comparison of 36-chute and 36-spoke suppressors
(Models 33 and 35). The source distribution for the chute nozzle peaks slightly
closer to the nozzle exit for higher frequencies.

Figure 3-332 compares 36-chute dual-flow and turbojet suppre.asors (Models
24 and -16), while Figure 3-333 shows the same comparisoti with ejectors (Models
36 and 19). In both cases, the turbojet dist-ibutions peak farther downstream
in the high and midfrequency ranges.

Figures 3-334 and 3-335 show the effect of ejectors on 36-chute nozzles
for dual-flow (Models 24 and 36) and turbojet (Models 16 *\id 19) configurations,
respectively. In each case, the peak high-frequency source distributions occur
farther downstream with the ejector. There is no significant effect on low-
frequency saource distributions which normally peak 4. natraam of the rjector

Typical axial distributions of sound source Intensity for a suppressor
(Model 32) are shown in Figure 3-336. These 40-shallow-chute, dual-flow
suppressor results confirm the expectation that source dictributioun become
broader and flatter with decreasing frequaacy.
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4.0 AERODYNAMIC PERFORMANCE TEST PROGRAM

Historically, the introduction of mechanical jet noise suppression
devices into the exhaust gases of turbine engines has resulted in significant
losses in thrust, usually in proportion to the amount of suppression achieved.
In addition, the base areas associated with suppressor elements introduce a
performance (thrust loss) sensitivity to external flow conditions not normally
encountered with nonsuppressing exhaust nozzles. The task of designing a
viable jet noise suppressing exhaust system therefore depends heavily on an
understanding of the effect of nozzle geometric parameters on in-flight sup-
pression and performance. With this understanding, the designer can conduct
trade studies leading to a low-noise exhaust system with good aerodynamic
performance.

Past programs, such as the DOT Supersonic Transport Noise Reduction
Technology Program, identified the annular (plug) notzle with exit plane
suppressor elements as a promising high velocity jet noise suppresaion
system. A significant parametric data base on the effect of nozzle geometric
variations, such as element number and area ratio, was, however, not avail-
able. More importantly, renent advances in engine technology (variable
cycle engines) and acoustic work on the benefits of inverted flow nonales
with high radius ratios resulted in even greater voids in the available
performance prediction technology base. Unknowns included the eifect of
inner nozzle geometry, location, and area on overall nozzle performance. In
addition, high radius ratio, parametric jet noise suppressor performauce
data wore unavailable. The current program provided the vehicle for filling1 ,4 those technology voids.

4.1 GOL&EML PROGRAM OBJECTIVES AND SCOPE

The overall objective of the wind tunnel, test progran was to generate a
comprehensive parametric data base on the aerodynamic performan•e of both
dual- and single-flow annular nozzlelchute-type suppressor systems. These
data would augment existing data from previous program (such as the SST
PhaSe 11 Program) and provide information necessary to conduct the trade
studies and aircraft integration atudies reported in Volume III, and provide
design data for the noise abates_ twnzzile design guide (Task 6 of this
program).

Specifically, tho objectives of the aerodynamic performance test program
were to obtain performance data under simulated flight conditions on the
effecnts of suppressor area ratio, suppressor element nuatbr, sod suppressor
vejttilation arc-t. In the case of the dual flow notzles, data *re required
on- the effects of inner nozl.e geometry. Suppressor element base pressure
data were required as an Integral part of the basic performance data. Pre-
vious programs had identified element base drag as the major contributor to

Sexhawit system thrust lost. Parametrkz base pressure infornatton would pro-
vide a basis for correlation of these data resulting in a performance
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prediction tool for future design studies. The program involved the design
and fabrication of model hardware, geometrically duplicating acoustic models
lescribed in Section 3.1) and testing in the Lewis Research Center 8- by 6-
foot Wind Tunnel. Data obtained in the test program inwluded nozzle thrust
coefficients and model surface static pressures. Data were taken over a
range of inner to outer stream pressure ratios representative of takeoff
conditions with tunnel Mach numbers of 0.0, 0.36, and 0.45.

4.2 TEST FACILITY DESCRIPTION

The. test program was conducted in the NASA-Lewis 8- by 6-foot supersonic
wind tunnel. The test nozzles were mounted to a 8.5-inch diameter cylindr-
ical sting which was supportea in the test section by a perpendicular strut
connected to the tunnel ceiling. A schematic and photograph illustrating
this mounting system is shown in Figure 4-1. Air was supplied to the model
through tubes running down the strut and emptying into coannular air passages
leading aft to the model. The air source was a continuous supply of 450
psig compressor air which pacced thro',gh a system of control valves, flow-
meters, und into the strut. A schematic of the air supply system is shown
in Figure 4-2. The outer nozzle air was veetered through a 1.248 inch diameter
choked venturi. The inner noezle air supply was metered through either a
1.1398-inch or 0.3985-inch diameter choked venturi, depeuding on the flow
rate required.

Tith nozzle thrust vas measured with a load call mounted in the forward
portion of the sting as shown schematically in Figure 4-3. The coannular
air passae in the sting were mounted to the load cell and were metric;
i.o., forces on tie coannular air passages vere measured by the load cell.
The air supply tubes internal to the strut were ftxed to the tunnel ceiling
atn thus forted f'lexture columnos bridging the nonmetric and metric portion*
of tho cest rig. lIteractions resultitt; from the bridging ire accounted for
It the balance calibration. Airflow from the tubes enternd the sting
"perpendicular to the sting ax# atr, thus created no entering momerutua fotte
on the lood cell. The air passagos theselvte where suspended Inlde the
sting uith bearings which oupported the concentric Iassaies and allowd the
axial forces to be trAntwitted to the load coll. Static pressure Inectnunts-
tcitn was located on the forwsrd-tacing portions of the internal tetric
tarduware so that Oil tare force could be accounted for in ctas where in-
teral stattic pressures were diffrtent froa ambient.

The load coil was calibrated by mounting the Supersonic Tunnel Asso-

ciatiuo (STA) •odel oa the sting and applying a known axial force along the

Ienterline of the model and the load cell. mls known force vas tenerat'4
by a hydraulic cylinder connected to a circular pad vwheh applied force to
the nozzle in an axial direction. The correlation of the known applied
force and tht millivolt output of the load cell comprised the desired call-
brattoo. The ; Alibrsitio was made fro* 0 to 1000 pounds, the maximam ilow-
able balauce it-id.
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Figure 4-2. SchemStiC of Model Air Supply.
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4.3 MOLEL DESCRIPTION

The suppressor models tested in the NASA Lewis 8- by 6-foot supersonic

wind tunnel included 15 annular suppressed nozzle configurations, a 104-tube
nozzle, and an eight-lobe nozzle. The annular nozzles simulated both turbo-
Jet installations (single flow) and advanced, inverted-flow variable cycle
engine installations (dual flow). In addition to the suppressor models, a
refeence nozzle, the Supersonic Tunnel Association (STA) model, was also
tested. A description of these models is presented below. Details of the
-x&del geometries and instrumentation are presented in Appendix F.

4.3.1 Annular Suppressed Models

A schematic of a typical annular suppressed nozzle configuration is
shown in Figure 4-4 to illustrate the variables investigated. Principle
variables evaluated included: element number, N, for a given suppressor
area ratio; suppressor area ratio, AR, for a given element number; innor
nozzle area (or radius ra-io); axial location of the inner plug, X; and
chute vnt4 .lat.i a..la, or depth, d. Table 4-1 lists the coafigurations'I tested and key geometric variables. Figure 4-5 presents a pictorial sunnary
of the midels tested.

JBasically the annular nozzles are representative of current concepts
for supersonic transport exhav z systems. The two inner plug (15* half
angle) axial locations r.present eithav an expandable flap and seal desi.gn
for inner arcs coatrol (X/D- - 0.412) or a similar system with a trans-
lating plug (X/Dmax, - 0.16T1"

The inner plug radius ratios tested represent a variation in engine

cycle, i.e., the variation on the amount of fan flow relative to core flow
for given preusure/temperature conditions in each stream. The (Rr)i - 0
configurations are representutive of a turbojet or mixed-flow turbofan
design.

The shallow-chute suppressor designs, with a suppressor area ratio (M&)
of 1.75, represent a potnatially light, easily stowable systea. Element
number, N, was varied between 20 and 40, reprcsenting a rractical range for
this variable. Based on previous tent e'tperience. 2b represents a lower
limit for reasonable supptessirsu while 4V -epresents an upper limit for
reasonable performance.

The deep-chute suppressor designs, with 36 elements, represent a
system with good performancel i.e., tcl chute depth implies good ventilation
for maintaining low base drag. The area ratio was varied between 1.5 and
2.5, again representing practical limits. In thiG case, 1.5 represents the
lower limit for acoustic reasons and 2.5 an upper limit for mechanical
design reasons.

at In addition to the shallow-chute and deep-chute 4es8gns, a "spoke"

suppressor was tested. The spoke suppressor has hLatorically been an
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S'' X

Chute Base -

Flow Area

S utppressor Area Ratio - +Ao ÷ Ah)/Ao

where: A° a Total Outer flow Area

SAc Total Chute Bass Area

e Element Number - N, Total Number of Suppressor Bleients

e Chute Ventilatiou Depth - d

9 Inner Nonale Radius Ratio * (Ir) * r /r
(r was Constant for all Duel Flow Configurations)

0
e Inner Plug Axial Opacing Ratio x/D

max

Figture 4-4. Schematic of Annular Suppressed Nozzle 8howing
Key Geometric Variables.
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Table 4-1. Nozzle Configuration Description.

Nozzle Suppressor Inner Plug
Configuration Type N AR Description X/D (Rr)

_ _Shallow__ hute 20 17_Bs n 0max. r0
SC1 Shallow Chute 20 1.75 Baseline 0.412 0.78
SC2 Shallow Chute 30 1.75 Baseline 0.412 0.78
SC3 Shallow Chute 30 1.75 Reduced Area 0.412 0.89
SC4 Shallow Chute 30 1.75 Full --. ...
SC5 Shallow Chute 30 1.75 Forward 0.181 0.78
SC6 Shallow Chute 40 1.75 Baseline 0.412 0.78

DCU Deep Chute 36 1.5 Baseline 0.412 0.78
DC2 Deep Chute 36 1.5 Full -...

DC3 Deep Chute 36 2.0 Baseline 0.412 0.78
DC4 Deep Chute 36 2.0 Reduced Area 0.412 0.89
DC5 Deep Chute 36 2.0 Full --.--
DC6 Deep Chute 36 2.0 Forward 0.181 0.78
DC7 Deep Chute 36 2.5 Baseline 0.412 0.78
DC8 Deep Chute 36 2.5 Full --- ..

DC3 (Spoke) Spoke 36 2.0 Baseline 0.412 0.78
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attractive concept due to its potential for. low weight and ease of storage in
the unsuppressed mode. The spoke configuration (model DC-3. (spoke)]:was
derived by filling the ventilation area of configuration DC-3 with inserts,
as shown in Figure 4-5 and Figure F-15, Appendix F.

A schematic of a typical annular suppressed nozzle installed on the
model support string is shown in Figure 4-6. Adapters connected the model
flowpaths to the inner and outer air supply passages. The nozzle total
pressure and. temperature measurements were made with instrumentation rakes
downstream of flow conditioners (choked plates and screens) to assure flat
flow profiles: The outer diameter of the models was 8.0 inches, which rý-
quired a reduction from the 8.5-inch diameter sting. This reduction was,
made via a nomanetric transition fairing. The metric breali (the separation
between the metric and nonmetric portion of the system) was provided by a
0.05-inch gap between the fairing and model shroud, as shown in Figure 4-6.

4.3.2- 104-Tube Model

The 104-tube suppressor model was the same as that tested in the JENOTS
free jet facility As described in Reference 12. A photograph of the model
is shown in Figure 4-7. The model outer diameter is 7.245 inches and the
physical throat area is 12.56 in. 2 . The suppressom area ratio is 2.8. Key
geometric parameters are shown in Figure 4-8.

4.3.3 Eight-Lobe Suppressor Model

The eight-lobe suppressor was also the same hardware tested in the
JENOTS free jet under Task 4. A photograph of the model installed in the 8-
by 6-foot wind tunnel is shown in Figure 4-9. The model outer diameter is
6.625 inches and the throat area is 13.121 in. 2 . The odel simulated a full-
scale turbojet exhaust system which would utilize secondary air from the
inlet to purge and cool the cavity between the nacelle and engine. The
cooling air would exit at the trailing edge of the lobes. This, secondary
air gap can be seen in the closeup of the nozzle exit, Figure 4-9. Forthe
wind tunnel test, the secondary airflow was not simulated.

4.3.4 Reference Nozzle

The Supergonic Tunnel Association (STA) nozzle was used as a reference
and calibration device for the wind tunnel test series. This nozzle, showm
in Figure 4-10, is basically a modified ASME nozzle with a circular-arc
boattail. The use of the STA nozzle as a reference is described in detail
in Section 4.5.1.
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4.4 DATA REDUCTION PROCEDURES

General descriptions of the methods used to determine model flow rates
and nozzle thrust are contained in the following subsections. A more exten-
sive detailing of the data reduction procedures is included in Appendix F.

4.4.1 Flow Rates

The mass flow through the outer nozzle was measured with a 1.248-inch
throat diameter choked venturi meter, located as shown in Figure 4-2. The
flow rate was calculated using the measured gas total temperature and pres-
sure, TTVO and PTVO, respectively, and the equation:

Kvo PTv0 A-0o
W - CD Vo 4 __ (1)

where CDV is the venturi flow coefficient. The critical flow factor, KVo,
was calculated as a function of total pressure and temperature to account
for real gas effects as given in Reference 36.

The mass flow through the inner nozzle was measured with either of two
choked venturi meters located as shown in Figure 4-2. The flow for high
inner flow rates was measured using the 1.1398-inch-throat-diameter venturi.
The flow for the low inner flow rate testing was measured with the 0.3985-
inch-throat-diameter venturi. For both meters, the flow rate was computed
from a calibration of the meters made by the manufacturer utilizing the
measured venturi pressure and total temperature.

4.4.2 Flow Coefficients

The flow coefficient of a nozzle is defined as the ratio of actual mass
flow rate through the nozzle to the ideal isentropic flow rate at the teur-
perature and pressure of the flow:

C * measured flow
ideal flow (2)

The ideal weight flow for the outer nozzle was calculated from the relation:

K A PTo A(
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I
where Ao, PTo, and TTo are the outer nozzle physical throat area, total
pressure, and total temperature, respectively. The critical flow factor,
Ko, was corrected for real gas effects; A*/Ao is the ratio of the flow area
at sonic conditions to the outer nozzle throat area (A*/Ao - 1.0 for values
of nozzle pressure ratios greater than 1.8929).

The inner nozzle ideal weight flow was calculated in a similar fashion
using the inner nozzle throat area and the inner flow pressure and tempera-
ture. For the low inner flow testing, the inner nozzle total pressures

required to supply the low flow rates were generally lower than ambient
pressure due to the pumping effect of the outer flow. In these cases, the
ideal flow rate and flow coefficients are meaningless and were not calcu-
lated.

4.4.3 Thrust Measurements

The thrust of the exhaust nozzles is defined as the axial exit momentum

of the exhaust flow, plus the excess of exit pressure over ambient pressure

times the exit area normal to the axis, minus the axial drag on the nozzle
external surface, i.e.,

F d(WV)axial + (P-Pa)dA - Dexternal (4)

Axit Aexit

The external drag consistg of both the pressure drag on the boattail
surface and the and suppressor element bases, and the axial component of
skin friction. Figure 4-11 shows a control volume applied to the test
nozzles. The momentum equation in the axial direction for this control
volume is:

F FLC+FAs+A (P -Pa)+A2 (P-Pa)+A (P 3 Pa)+A4 (PP (5)

where FLC is the axial force applied to the load cell and FAS is the axial
force applied at the boundary of the control volume by the air supply tubes.
The static pressures P1 , P2, P3 , and P4 were measured with static taps at
each of the four areas (Figure 4-11). The force measuring system was cali-
brated by applying known forces and correlating this force against the load
cell output, as previously described in Section 4.2.

An adjustment was made to the measured thrust to account for external
friction drag on the cylindrical section upstream of the nozzle shroud. The
axial force on this 8.O-inch diameter section, which extended from the
metric-break to the tttach-point of the nozzle shrouds, was not included in
the nozzle net thrus:. The friction drag was calculated by the equation:
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Df P M2 A C (6)f 2 a a c f

where Ac is the wetted surface area of the cylindrical section and Cf is
the skin friction drag coefficient.

The thrust of the nozzles for this test was therefore given by:

F =FLC+FAs+AI (PI-P a)+A2 (P2-P a)+A3 (P3-P a)+A4 (P4 -Pa)+Df. (7)

4.4.4 Thrust Coefficient

The thrust coefficient is the ratio of the measured nozzle thrust to
the ideal thrust of the inner duct flow plus the ideal thrust of the outer
duct flow. The ideal thrust for each stream equals the actual mass flow
rate times the ideal velocity, i.e., the velocity of the stream expanded
isentropically from the total pressure to the ambient pressure. The equation
for the thrust coefficient is thus:

C F (8)T WVIWii

The ideal thrust for the nozzles was calculated using the dimensionless
ideal-thrust function which is a function of only the nozzle pressure ratio.

During much of the low inner flow rate testing, the total pressure of
the inner nozzle flow was lower than ambient. In these cases, the ideal
thrust of the inner nozzle was set equal to zero.

For the static tests of the STA model, a dimensionless stream-thrust
parameter was also calculated as:

f F + PaA9 (9)

where A9 is the STA nozzle exit area.

4.4.5 Pressure Data

Total pressures in the models and static pressures on the model surfaces
were measured with scanning valve/transducer arrangements. The individual
static pressure readings were also nondimensionalized by the ambient pres-
sure. Axial pressure forces on the aft-facing portions of the shroud, outer
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plug, inner plug, and suppressor element bases were calculated by multiplying
the difference between the static pressure at each tap and ambient by an
incremental projected area represented by the particular tap and summing the
products, i.e.,

Fp = E(P-Pa)AA (10)

These pressure forces were also nondimensionalized by the total ideal thrust
of the nozzle:

F , P (11)
WiVli+WoVIo

Specific tap locations are presented in Appendix F.

4.5 TEST RESULTS AND DISCUSSION

4.5.1 Data Quality

Prior to testing the plug nozzle models in the 8- by 6-foot tunnel, a
Supersonic Tunnel Association (STA) model was tested as a means of investi-
gating the force and weight-flow measurement accuracy of the test equipment.
The STA model assembly is shown in Figure 4-10. The model has a 4.0-inch
diameter throat and an 8.0-inch maximum outside diameter, corresponding to
the 8.0-inch maximum outside diameter of the annular nozzle models. Air
could be supplied to the STA model using either the outer or inner flowpath
as shown in the schematic of Figure 4-10. The tests were conducted with air
supplied through either the 1.248-inch-diameter meter for the outer nozzle
air supply or with air supplied by the larger of the two inner flowmeters,
which was 1.1398 inch in diameter. The smaller of the two inner flowmeters
was not tested with the STA model because flow sufficient to choke the STA
model could not be supplied due to pressure limitations. This did not com-
promise the the facility checkout because the small meter was used only to
meter flow for the low inner flow test points, where the flow rates ranged
from one to six percent of the outer flow. Small errors in this measurement
could not affect overall results.

The criteria against which the STA measurements were compared to deter-
mine the facility thrust and flow measurement accuracies were calculated
values of STA thrust coefficient, flow coefficient, and dimensionless stream-
thrust porameter for the static tests and previous measured values for wind-
on testing. The calculated static values are derived from semi-empirical
methods of calculating standard ASKE long radius nozzle performance, as
described in Reference 37. These ASHE equations are modified to include the
effect of a small difference in length of the internal flowpaths between the
ASKE and STA nozzles. The resulting equations, for nozzle pressure ratios
equal to or greater tfan 1.89, are as follows:
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CD = 1 - 0.241RN

CV - 1 - 0.143 RN 0"2

F9 = G(1 + 1.4 CD CV) (0.52828)

where

G- 1.00012 + 9,9112 x 10- 6 x PT

and CV is the peak thrust coefficient.

These equations are based on a large data base and provide an accurate
method for calculating the static STA nozzle performance parameters. For
the wind-on tests, the data are compared to previous results on the same STA
model in the NASA Lewis 8- by 6-foot tunnel using different flowmetering and
force measuring hardware. These previous tests are reported in Reference
38.

Comparisons of the measured static thrust and flow coefficients and
stream-thrust parameter with the calculated values are shown in Figures 4-12
and 4-13 for the 1.248-inch and 1.1398-inch-diameter meters, respectively.
Figure 4-14 compares the measured thrust coefficient to previous test results
at Mach numbers of 0.36, 0.40, and 0.45. Agreement between the measured
values and the calculated or pieviously determined data is good, as is the
repeatability of the data (five to eight static points and two wind-on
points were taken at most nozzle pressure ratios). Repeatability of the
wind-on data was better than the static data, possibly due to the increased
tunnel vibration which would reduce hysteresis in the support bearings.

The number of repeat points taken at static conditions allowed a statis-
tical evaluation of the data. Standard deviations and the bias of the mean
value of the data from the "known" (or calculated) value were calculated by
the following equations:

Standard Deviation )2 
(12)

Bias X X - m

where
Xi - individual measured value of the parameter (e.g., thrust

coefficient or flow coefficient)

X- mean of measured values of the parameter

m - knomt value of parameter

n -ýiumber of samples taken of the given parameter
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Standard deviation calculations were made at each pressure ratio for
which repeat points were taken. Bias calculations were made at each pres-
sure ratio above 1.89 for which repeat points were taken, as the calculation
procedure for the known values does not apply below this pressure ratio.
The procedure used for taking repeat points was to set each data point once
in the order of increasing nozzle pressure ratio and then repeat each point
going down in pressure ratio, until a zero flow condition was reached; then
the process was repeated. In some instances either wind-on test points or
tests utilizing the other flowmeter were conducted between repeating cycles.

The results of the statistical analysis are shown in Figures 4-15 and
4-16 for the thrust coefficient and flow coefficient, respectively. The
thrust coefficient deviation and bias were dependent on the magnitude of the
nozzle thrust and are, therefore, plotted as a function of balance load in
Figure 4-15. The flow coefficient parameters are shown as a function of the
flowmeter total pressure over the range for which STA data were taken. The
upper limit to the STA model airflow and force balance loading was the
maximum supply pressure at the venturis, approximately 400 to 420 psia.
These results indicate an accuracy and repeatability of greater than ±0.5%
which are well within acceptable limits for the test program. Additional
information can be found in Reference 38.

4.5.2 Annular Nozzle Thrust Coefficients

A total of 15 suppressed annular nozzle configurations was tested. All
configurations were tested at tunnel Mach numbers of 0, 0.36, and 0.45, The
outer nozzle pressure ratio was varied from 1.5 to 3.3. Two separate regimes
of inner nozzle flow conditions were investigated; a "low" or bleed flow
regime where the inner nozzle flow rate was varied from zero to six percent
of the outer nozzle flow, and a "high" flow regime in which the inner stream
pressure ratio was varied from 1.5 to 3.5.

Performance in terms of nozzle thrust coefficient, Cfg, is summarized
for the 15 annular suppressed configurations in Table 4-11. The thrust
coefficients presented in the table were selected at a nominal inner and
outer nozzle pressure ratio, PTJ/Pa and PTo/Pe, of 2.5. Both static (Ha -
0) and Mach 0.36 performance are listed. Table 42 illustrates the *spread"
in performance obtained between the various configurations and also illus-
trates differences between static and wind-on performance. The detailed
performance of each nozzle as affected by inner and outer nozzle pressure
ratios and external flow conditions is included in Appendix F. Also con-
tained in Appendix F are the summary off-line data printouts containing all
key measured parameters.

4.5.3 Efftct of Suppressor Element Mumber

The effect of t e number of suppressor elements on performance, for a

given suppressor art ratio, can be investigated by domparing model SC-l,
SC-2, and SC-6 test esulta. Thrust coefficients are presented in Figure
4-17 as a funct ion o suppressor element number and inner nozzle pressure
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ratio for an outer pressure ratio of 2.5 at static and Mach 0.36 conditions.
In all cases, performance decreases as element number increases. For an
inner nozzle pressure ratio of 2.5, the thrust coefficient decreased from
0.929 for 20 elements to 0.907 for 40 elements. This decrease in nozzle
performance with element number reflects the increase in element base drag
as illustrated in Figure 4-18 where both performaAce and element base drag,

Sin terms of ideal thrust, are shown as a function of element number and
external Mach number for an inner and outer nozzle pressure ratio of 2.5.

Figure 4-19 presents trends in performance as a function of element
number and outer pressure ratio for an inner pressure ratio of 2.5. Note
that performance sensitivity to element number increases as outer pressure
ratio increases. In summary, performance is adversely affected by an increase
in the number of elements for a given suppressor area ratio at outer nozzle
pressure ratios greater than 1.5.

4.5.4 Effect of Suppressor Area Ratio

The effect of suppressor area ratio on performance can be investigated
by comparing test results for models DC-I, DC-3, and DC-7. Thrust coeffi-
cients as a function of suppressor area ratio and inner nozzle flow condi-
tion for a constant outer nozzle pressure ratio of 2.5 are presented in
Figure 4-20. At static conditions, performance increases as area ratio
increases for all inner flow conditions. At Mach 0.36, performance first
decreases, then increases with area ratio for "low" flow conditions and
remains relatively constant for "high" inner flow conditions. These trends
appear to contradict element base pressure drag trends shown in Figure 4-21.
Figure 4-21 illustrates the loss in gross thrust due to element base
pressures as a function of suppressor area ratio for inner and outer nozzle
pressure ratio of 2.5. Statically, the base drag loss does not vary with
area ratio, while at Mach 0.36 and 0.45, drag increases with area ratio.
The reason for this apparent anomaly is that, in conjunction with increasing
area ratio, the plug half angle immediately downstream of the suppression
was decreased. The angle was 15.80 for the area ratio 1.5 suppressor, 11.70
for the area ratio 2.0, suppressor, and only 7.40 for the area ratio 2.5
suppressor (see Appendix F). In addition, as area ratio was increased, the
external shroud boattail angle and projected area were decreased. As a
result, shroud and plug drag decreases tended to compensate for the in-
creased element drag at Mach 0.36 and 0.45 as area ratio was increased.
BaIod on previous experience with increasing area ratio, Reference 3, it
tvoultd ht, vptw 4d) Ould Lt I" litk| plug oumgl downstream ol the nuppressor were
held constant as area ratio was increased, the performance trend at Mach
0. 36 and 0.45 would follow the same trend as the element base pressure
lossea, i.e., lower performance -with higher area ratios.

4 .5.5 EfJect of Inner Nozzle Area (Inner Radius Ratio)

Trends in performance as the inner nozzle area is varied can be in-
vestigated by -omparlng model SC-2, SC-3, and SC-4 (AR 1.75,. 30 shallow"
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chutes) and models DC-3, DC-4, and DC-5 (AR 2.0, ý6 deep chutes). The
effect of reducing the inner nozzle flow area (increasing radius ratio) on
the performance of the area-ratio-l.75, 30-shallow-chute suppressor is
presented in Figure 4-22 for a typical outer nozzle and inner nozzle pressure
ratio of 2.5 and Mach numbers of 0, 0.36 and 0.45. As the inner nozzle area
Is decreased, performance is reduced. Figure 4-22 also shows the effect of
inner nozzle area on the suppressor base drag. Note that the drag is refer-
enced to the sum of the ideal thrusts of both inner and outer streams. If it
were possible to measure the performance of the inner and outer nozzles
independently, it could be expected that the outer flow losses would be high
relative to the inner flow losses due to the influence of the suppressor.
Therefore, as the ratio of unsuppressed to suppressed flow decreased, the
total nozzle performance could be expected to decrease, as illustrated by
the test results.

Trends for the 36-deep-chute, area-ratio-2.0 nozzle are presented in
Figure 4-23. These trends are the same as those described above for the
shallow-chute models.

4.5.6 Effect of Inner Plug Axial Location

The effect of inner plug axial location can be investigated by comparing
the performance of models SC-2 and SC-5, 30-shallow-chute, area-ratio-l.75
suppressor, and models DC-3 and DC-6, 36-deep-chute, area-ratio-2.0 sup-
pressor. The shallow-chute comparison is shown in Figure 4-24. Performance
is compared as a function of outer nozzle pressure ratio for an inner nozzle
prssure ratio of 2.5 at Mach 0, 0.36, and 0.45. At outer nozzle pressure
ratios of 2.5 and less, axial position of the inner plug had very little
effect on nozzle performance. At pressure ratios greater than 2.5, the
forward plug location gave the higher level of performance.

Comparisons for the 36-deep-chute suppressor are shown in Figure 4-25.
For this model, the effect of axial inner plug location is minimal except at
Mach 0.45 where the forward position gives slightly better performance above
pressure ratios of 2.5.

4.5.7 Effect of Inner Nozzle Area (Radius Ratio) and Plug Location on
Element Base Pressure

The effect of inner nozzle geometry on suppressor element base pressure
is shown in Figure 4-26 for Mach 0.36 and an inner nozzle pressure ratio of
2.5 for both the shallow-chute and deep-chute suppressors. The key here is
that changes in inner plug area and axial location did not significantly
influence the element base pressure. This could be expected based on the
fact that the inner nozzle is downstream of the suppressor exit plane. The
influence of inner nozzle changes should not feed upstream, especially in
cases where the outer, or suppressed, stream pressure ratio is above choked.
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}. 4.5.8 Effect of Suppressor Ventilation on Performance

The importance of suppressor ventilation on performance is shown in
Figure 4-27 where model DC-3, the 36-chute, area-ratio-2.0 suppressor is
compared to model DC-3 (spoke). As was described in Section 4.3.1, inserts
were placed in the suppressor to effectively eliminate base ventilation from
the perimeter of the elements. As can be seen in Figure 4-27, elimination
of the ventilation area significantly impacted nozzle performance, resulting
in a loss of from three percent at low outer nozzle pressure ratios to seven
percent at a pressure ratio of 3.0. It can be concluded from this test that
good aerodynamic performance is highly dependent on the amount of available
ventilation area.

4.5.9 Effect of External Mach Number

In all cases, increasing external Mach number had a detrimental effect
on nozzle performance. Figure 4-28 shows trends in thrust coefficient as a
function of tunnel Mah number for the shallow-chute models. The loss in
thrust coefficient between Mach 0.45 and static conditions varied between
1.5% and 4%, depending on the configuration. The largest loss occurred for
the full plug design, model SC-4.

Similar trends are shown ia Figure 4-29 for the deep-chute models. The
loss in tbhtst coefficient between static conditions and 4ach 0.45 varied
from 1,6% for the area-ratio-l.5 suppressor to 8.82 for the area-ratio-2.5
suppressor vith full plug.

4.5.10 104-Tube Nottle Test Results

Thrust coefficients for the 104-tube nozzle are shovt in Figure 4-30.
The peak static perfotiunce obtained was 0.887 at a nozzle pressure ratio of
3.1. At With 0.36, a thrust coefficient of 0.864 was obtained at a pressure
ratio of 3.0. The suppressor bnse plate pressure drag is a major lost
co~mponent for the 104-tube nuzzle, as illustrated I,,% Figure 4-31, Un this
Figure, both the overall thrust loss as measured by the force balance, and
the base drag lots calculated by integrating static pressures, are coWared.
At a nozzle pressurfo ratio of 3.0 at Hach 0.36, the overall loss io 13.6%,
of which 7.4% is bose drag. Refatining losses include tube internal friction
and tube entrance losses. As in the case of spoke and chute suppressors,
external flow two a significant detrimental effect an perfotmance about
2.% in thrust coefficient betueen static coaditions aad Mach 0.36.

4.5.11 Vi~ht-IAbe .Nozzl, Test Results

Thrust coefticientus for the q-lobe nozleo are presented in Figure 4-.32.
gint. exterrnal flach number has a signlficant adverse effect on perfotualwe.
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Statically, a thrust coefficient of 0.950 at a pressure ratio of 2.0 was
measured, while at Mach 0.36, the thrust coefficient was 0.926. The perfor-
mance of this nozzle would be significantly improved if secondary air were
available to fill the gap between the primary nozzle and the outer shroud,
as explained in Section 4.4.3. Because the model did not provide a passage
for secondary air, the gap area would be "pumped" to less than ambient
pressure by the primary jet, resulting in abnormally high base drag losses.
In addition, secondary air would reduce the nozzle performance sensitivity
to external flow.

4.5.12 Suppressor Flow Coefficients

Suppressor flow coefficients are functions only of suppressor geometry
above choked pressure ratios. Flow coefficients are useful in the design of
full scale exhaust systems for setting the nozzle physical throat area re-
quired to match engine cycle conditions. For scale model tests, they are
also useful as a diagnostic tool. For example, a changing flow coefficient
above choked conditions could be indicative of either a leak in the model
system or a deflection in the suppressor elements with increased pressure
(throat area changes). Nothing of this nature was encountered in this test.
Flow coefficients are tabulated below for each suppressor configuration.

Suppressor Type AR N CDe

Shallow Chute 1.75 30 0.971
Shallow Chute 1.75 40 0.966
Deep Chute 1.5 36 0.968
Deep Chute 2.0 36 0.948
Deep Chute 2.5 36 0.978

Flow coefficients for each data point taken can be found in Appendix P
in the off-line data summary tabulations.

4.6 CONCLUSIONS

The results of the aerodynamic performance test program again illustrate
that exhaust nozzles which incorporate element base areas as an integral
part of the jet noise suppression mechanism are sensitive to external Mach
number. Static testing is an inadequate means of estimating the in-flight
performance of a full scale system since not only performance levels, but
trends with geometric variabl's may be different in flight than statically.
This was demonstrated in the area ratio variation experiment where results
indicated that, statically, performance increased with increasing area ratio.
At Mach 0.45, however, performance decreased with increasing area ratio.

In general, the highest exhaust nozzle lose mechanism is suppressor
element base drag. The so-called "base ventilation area" has a dramatic
impact on element base drag a was demonstrated by the deep-chute versus
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"spoke" experiment, which resulted in a greater than seven percent loss in
thrust coefficient when the chute ventilation area was blocked.

The test results also illustrate that the number of elements, for a
given suppressor area ratio, is an important variable as far as performance
is concerned. Increasing the number of elements had a detrimental effect
on performance. For a typical outer and inner nozzle pressure ratio of 2.5,
at Mach 0.36, a 2.2% loss was recorded when the element number was increased
from 20 to 30.

Increasing the area of the inner nozzle, for a given suppressor geometry,
improved the overall performance of the exhaust system, as might be expected
since the inner nozzle is "unsuppressed" and only small losses are incurred
relative to the outer suppressed stream. Increasing the inner nozzle area
while keeping the outer nozzle area constant resulted in increased total
nozzle flow rate. Nozzles with no inner flow, i.e., simulated turbojet
nozzles, exhibited the lowest performance since all engine flow passes
through the mechanical suppressor.

Inner nozzle flow or geometric conditions had little or no effect on
suppressor element base pressures. This allows some freedom in the design
of the inner nozzle without fear of increasing suppressor base drag. How-
ever, care should be exercised in the design of the inner nozzle to prevent
excessive inner flow performance losses. Although all inner plugs in this
test program had essentially the same contours, test results reported in
Reference 39 have shown that the shape of the inner plug can have a signif-
icant effect on performance.

In summary, thy data taken in the NASA-Lewis Research Center 8- by 6-
foot wind tunnel was of high quality, with accuracy and repeatability
generally better than ±0.5% over the range of interest. The results of the
test program significantly add to the data base already available for the
design of advanced, high velocity jet noise suppressor systems. Specifically,
these data were utilized in performing trade studies of performance versus
suppression, and aircraft integration studies reported in Volume III. Also,
correlation of these data was s key element in formulating performance

prediction procedures for the Task 6 Design Guide.

490

1.44
* -



5.0 RESULTS AND CONCLUSIONS

Task 3 of the High Velocity Jet Noise Program involved a series of para-
metric acoustic, aerodynamic and source measurement tests on baseline and
suppressed nozzles. This report (Volume II of IV) has documented the model
configurations, test efforts, and results.

Baseline conical nozzle acoustic data have been shown to agree well with
present SAE prediction methods for jet mixing noise, especially with respect
to peak noise level and to shock cell noise when correlated with i-2-.
Plug nozzle studies have shown that suppression increases with radius ratio.
Suppression levels up to 6 APNdB have been achieved at high radius ratio.
Coplanar-coannular nozzles with outer to inner flow area ratios of 0.4 to 2.0
have demonstrated inner to outer flow ratio to be an important design vari-
able. Maximum suppression was achieved when Wo/Wi was less than 0.1. The
variation with area ratio was minimal above this ratio. Complete blockage of
the inner flow caused a significant loss in suppression.

Suppressor and system aerodynamic and geometric parameters evaluated
experimentally included the following: suppressor area ratio, radius ratio,
flow management (system velocity ratio, weight flow ratio and area ratio),
inner stream geometry, element number, element type, and treated ejectors on
multi-element and unsuppressed inverted coannular flow nozzles. Suppressor
area ratio variation for single-flow nozzles has established that peak noise
suppression increases with increasing area ratio at high jet velocity and de-
creases with increasing area ratio at low jet velocities. For example, a 5
PNdB difference existed between a 1.5 and a 2.5 area ratio nozzle at 2400
ft/sec. Minimal distinction was seen at 90'. The area ratio study conducted
on ducl-flow nozzles (with only the outer stream suppressed) shows a maximum
of 3.5 peak PNdB variance between the configurations, with the suppression
level dependent on jet velocity. Low-area-ratio, high-radius-ratio designs
were consistently better at low to intermediate jet velocities, as they were
for the full span turbojet nozzles. Peak noise suppression levels of 11, 9.5

and 10.4 for area ratios of 1.5, 2.0 and 2.5, respectively, were below those
of the same suppressor applied to a single-flow turbojet (i.e., 4PNL - 11.5,
12.0 and 12.5), suggesting that a full-span turbojet supprtssor is slightly
more efficient than a half-span suppressor applied to a duvl-flow system.

Flow management and inner stream geometry studies were conducted utili-
zing a dual-flow nozzle system incorporating an outer strem half-span me-
chanical suppressor. These studies established that velocity ratio is an im-
portant design consideration with systems of low area ratio, e.g., Ao/Ai
0.65. Highest suppression levels were attained when inner flow was completely
eliminatedI. For systems of Ao/Ai a 1.92 and 3.6, variance due to velocity

ratio was not ti distinct and decreased as area ratio increased. Injecting
low mounts of nner flow to effect bypass ratios of 3.3 and 6.7 showed bypass
ratio to be a s.ronp parmeter influencing suppression. The influence was
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greater for low system area ratio, with suppression decreasing as Wo/Wi was
lowered from - to 3.3. Increasing flow area ratio caused an increase in sup-
pression of between 3.5 and 5 PNdB over its lower Ao/Ai counterparts. Inner
stream plug geometry variation showed only minor change in suppression.

Flow segmentation studies showed that maximum suppression levels of 10
PNdB were attainable. Increasing element number was more effective at mass
average velocity less than 2250 ft/sec. Reduction of element number was more
effective above this velocity.

Spoke/chute element type studies on a full-span suppressor achieved a
maximum suppression of 13.5 APNdB. Spoke and chutes were found in general to
exhibit equivalent peak noise suppression levels. At high mass average ve-
ocities, spoke suppressor effectiveness was diminished. A similar spoke/chute
study on a half span suppressor showed a peak PNL suppression level of 10.5
PNdB, significantly less than the 13.5 peak PNL attained by the full-span
application. The spoke nozzles were from 0.5 to 1.5 PNdB more effective
than chutes.

Application of acoustically treated ejectors to half and full span 36-
element suppressors was found to effect a significant increase in suppression.
Similar application to an unsuppressed inverted-flow coannular plug nozzle was
not as effective.

Studies to assess the influence of simulated flight using the freejet
technique established that a coamon set of velocity indices may not be estab-
lished for both baseline and suppressor nozzles. Chute nozzles in general
have shown a 3 PNdB loss of suppression in flight due to dominance of the
high frequency portion of the spectra, which realizes only a minimal flight
effect. The minimization of high frequency noise has been demonstrated to be
a critical design criterion for a suppressor if it is to realize a beneficial
flight effect.

Laser velocimet-r measurements established that suppra;sors enhance mean
velocity decay until the velocity approached 60% or less of tho fully expanded
isentropic velocity. The axial location of peak turbulence intensity is a
function of nozzle type and may be related to the tegion of maximum mean ve-
locity gradient. Axial location of peak turbulence intensity was found to be
a function of nozzle type; however, the absolute turbulence level range of 18
to 22% could not be correlated with exhaust nozzle type. Conical nozzle ve-
locity decay rate was reduced in simulated flight. Complex suppressor noz-
zles showed very little sensitivity to forward velocity, until the down-
stream region of the coalesced jet. The turbulence intensity levels near
the exit plane were found to be generally comparable. Overall, the laser
velocimeter has been demonstrated to be extremely useful in determining the
aerodynamic mixing' characteristics for complex multi-element suppressor
nozzles.

A wind tunnel test program illustrated that the aerodynamic performance
of suppressed nozzles which incorporate elemental base areas as an integral
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part of the design are sensitive to external Mach number. Static testing was
showi• to be an inadequate means of estimating in-flight performance of a po-
tential full-scale suppressor. In-flight performance levels, as well as
trends with geometric variables, may be different than static. The area ratio
variation study demonstrated this result when static performance improved with
increasing suppressor area ratio, and Mach 0.45 performance decreased with the
same area ratio increase.

In general, suppressor element base drag is the most important loss
mechanism. The sod-called base ventilation area has a dramatic impact on

element based drag as demonstrated by the seven percent loss in thrust
coefficient incurred when a deep-chute ventilation area was blocked as a
spoke.

Tests results also illustrate that suppressor segmentation is an impor-
tant performance variable. Increasing element number decreased performance.
For a typical outer and inner nozzle pressure ratio of 2.5, at flight Mach
0.36, a 2.2.% loss was associated with element number increase from 20 to 30.

Decreasing system area ratio ( o/Ai) for a fixed half-span suppressor
improved the overall system performancer This was anticipated, since the
inner nozzle is unsuppressed and only sma14, losses are incurred relative to
the outer suppressed stream. Systemsaith no inner flow, i.e., turbojet
nozzles, exhibited the highest performiance loss, since all flow passes through
the suppressor.

Inner nozzle flow rate and plug geometry variation had little or no
effect on suppressor element base pressure. This allows some flexibility for
inner nozzle design by eliminating concern ot-increasing base drag. Although
inner plug geometries in this study malntaind similar contours, results from
previous studies have shown that inner plug shape can impact performance
significantly.

The NASA-Lewis Research Center's 8-by-6-foot wind tunnel data was of
high quality, with accuracy and repeatability generally better than +0.52
over the range of interest. Study results significantly add to the aero-
dynamic performance data base available for the design of advanced, high
velocity jet noise suppresoor systems.
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APPENDIX A

'Figures A-1 through A-41 are dimensioned, schematic illustrations of
the test models discussed in Section 4.3 of this document.
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APPENDIX B

,. IACOUSTIC TEST MATRICES, AERODYNAMIC TEST CONDITIONS

The following tables sumearize the aerodynamic cycle parameters, meteor-
ological conditions, normalization parameters, and pertinent 2400-ft side-
line acoustic data (scaled to a total flow area of 338 in. 2 ) associated with
the far-field acoustic tests in support of Task 3, "Experimental Investigation
of Suppression Principles." Table numbers B-1 through B-45 correspond to the
model numbers defined in Section 4.3 and Appendix A (e.g., Model 1 through
model 45); Table B-46 represents Model 47.
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APPENDIX C

GENERAL ELECTRIC AIR-ATTENUATION MODEL

The air-attenuation model used for JENOTS data was developed in 1973 by
R.G. Fogg of General Electric (Reference 17). Mr. Fogg noticed that a linear
extrapolation of the SAE/ARP 866 curves (Reference 13) or the prediction of
''Harris (Reference 15) tended to distort the spectral shape for frequencies
above 20 kHz when the data was scaled or PWL was calculated as seen in Figures
C-i and C-2. He hypothesized that this distortion was the result of applying
excessive air attenuation at the high frequencies. From Harris' data, it was
clear that the molecular absorption diminished in percent of the total absorp-
tion as the frequency increased, leaving the classical absorption as the
dominant attenuator. By curve-fitting the trends of the classical and molec-
ular absorption with frequency at various humidities and a temperature such as
in Figure C-3, a family of prediction curves as shown in Figure C-4 was

developed. :or comparison, a similar presentation from Harris (Reference 15)
and Evans (Reference 20), is given in Figures C-5 and C-6, respectively.

Table C-i is a listing of the computer program used to generate the
correction factors. With the wet and dry bulb temperatures given in Appendix
B, one can calculate the values of the air-attenuation corrections applied

to the data presentee in this report.
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(Reference Figure 3.2, Page 3-3, "Harris Handbook of Noise"
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V-?

Table -- 1. Listing of the GE Air-Attenuation Correction Computer
Program.

to REM THIS PROGRAM PROVIDES CORRECTION FACTORS AND INCREMENTAL
II REM SPHERICAL AREAS FOR THE FAP FIELD CALCULATIONS. SEE TIME
12 REM SHARE PROGRAM "FARFLD". INPUT AMBIENT ATMOSPHERIC
13 PEM CONDITIONS AND ARC PADIUS AT LINE 9e. INPIT V.ICPOPHONE
14 REM ANGLE LOCATIONS AT LINE 8410.
30 DIM C(2),E(24).F(24).G(24).H(24),K(24),(C2).N(20)
31 DIM• PC20),S(20),1(20)
40 FOR I = I TO 24
50 READ F(I)
60 DATA 5e0,*63e,Be,ioeep, 12SP,16o0,2e2*SLe1 ,315O,4000e
70 DATA 50e0, 6300.8e0, e!eeee 125ee2 16ee0,2eee,.2Seee.
71 DATA 3150ee400eel5eoee,63000.e 0eee, Ceeeee
72 NEXT I
75 REM 9*TI°' IS WET BULB TEMPERATURE IN DEGrEES FR "TV° IS
76 REM ATMOSPHERIC TEMPEATURE IN DEGREES F. "PI" IS ATMOSPHERIC
77 REM PRESSURE IN INCHES OF HG. "R2" IS SPHERICAL RADIUS IN FT.
82 PEAD T!LT3*PIRP
90 DATA 33,#4029.921.10e0

S95 REM THE FOLLOV ING CALCULATIONS ARE FOP ABSOLUTE HUMIDITY.
.. e LET TP a ((5/9)*(TI - 32)) * 273.16
110 LET XI - 647.27 1 T2I III READ )6,b7,PB, L9P112 DATA 3.2437814,.S86826E-3O1,17eP379E-8

113 DATA 0.89
120 LET AS a b6 # b7#XI + Ije*Xlt3

Ii 130 LET Al w I * 2.1878s46L-30X1
"14e LET A2 u (XI/T2)C(AS/AI)
141 READ C6#C7

142 DATA 218.167,tL1.6959
150 LET P (C6/I0tA2)vC7
16e LET A3 * ((PIf.4.I9I5)-P)e(T3 - TI)
17e LET PP' P - ((A3)/(m155 -5 .28eTI))

•-171 nEAD, C8*C9,C5,D6
" • 172 DATA 144#i6UP°BS-7, 16°02E3

188 LET A4 x ((P2*C8)1((T3 # C9)*!5))*96
.. 181 Pn INT *'AfiblENT TEMPERATUlRE u**;T3O11DEORIEZS F"

- :•182 PnINT "116ET WULlt TWEP ArUnE, ,0"; TI) "DEGREES F41

S103 PRINT "BAnAMETRIC PRESStIPE all'sPI) "INCHES Of NO"
""184 PRINT
• 1S rPPINT *"APSOLIOTE HI!NIDITY (HA) w,*1)A410"GP•AM PEP C(18BC NETEP4*

10 7[• LET 01 a P11129,921
t!' 188 LET V)2 a MT 460)1519
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Table C-1. Listing of the GE Air-Attenuation Correction Comaputer
Program (Continued).

189 LET D3 =(SOR(D2))/D
190 PRINT IMPEDENCE COPPECTED 70 TD* DAY wl'3D3*.25E6
191 PRINT
192 PRINT
193 REM THE FOLLOWING CALCULATIONS ARE FOR ALPHA MOL MAX
2~0e REM H1 MOL HAX
205 READ F1,-F2,F3,F4,,F5#F6
210 FOR I - I TO 24
220 IF F(I) > 4~0eO THEN 227
225 LET A6 aF(I)
226 GO TO 23e
227 LET A6 zB9*F(D

23e LET LET H(1) v, e.028961*A6t@,51093
235 IF F(U) > 40e0 THEN 250
240 LET A6 3 PU)
245 GO TO 26e
25P LET A6 a B9*F(I)
260 LET C(I) = A6*09.00357451*EXP(0.0117537*T3)
261 IF A6 v 8900 THEN 266
263 DATA .l5023777EeC^..83707731E-02.,36541712E-e6,.56857641eE-11
264 DATA -e*312434198E-16#.eI 37537
265 LET CUI) a CFisF2.A6.F3*A6w2.F4.A6'3.#F5.A6?4).ExpP(6.cT3-59))
266 IF F(I) >40eO THEN 269
26? LET A6 a F(I)
268 GO TO 27e
269 LET A6 a b9*F(I)

270 LET Y4 a0*279129E-7*A6v2aP54@3
280 LET Y5 v e.?61933E-7#A6,2.e5081
290 LET K(U) v Y5 + (V4 - Y5)*(T3 -3r)/68
300 REM THE FOLLOVING CALCIILAYIONS ARE FOP ALPHA 90L OVEP
301 REM ALPHA MOL MAX
35LET A7 uA411(j)

310 IF A7 6.5 THEN 44iO
320 IF A7 1.0to THEN 38t0
330 LET YI (94 I695S546E-2e*A7) -0.35055924L.-I

340 LET Y2 t YI*A?) O* 0.07e773
350 LET Y3 * CV'eA?) et 0.1981673E1
36e LET Z(I) tv CY3*A7) + 0.18209e2EI
370 6~0 10 45e

r38e LET Y1 * (0.74335316E19A) -0*17186eEs"
390 LET Y2 a (YI*AI) 0* 01814166E2
480 LET YJ w MW*A) 0*23792759E1

$94



Table C-1. Listing of the GE Air-Attenuation Correction Computer
Program (Continued).

410 LET Y4 (Y3*A7) + 0.13220157EI
420 LET ZCI) = (Y4*A7) + 0.5230581E-3
430 GP TO 450
440 LET VI) = 0.2
450 LET Z(I) = 0.001*INT(1000*Z(I) + 0.5)
46e LET E(i) = ZCI)*C(I)
470 REM THE FOLLOWING CALCULATIONS ARE FOR THE EGA CORRECTION
480 e LET RI = R2
510 LET CI w (e.2041143SE-20P.p) - e.66703693E-16
"520 LET C2 = (CI*Rl) + 0.72854603E-12
530 LET C3 = (C2*RI) - 0.32650g13l-8
540 LET C4 = (C3*RI) 0*49614255E-5
55e LET C5 = (C4*RI) + 0.44663072E-2
560 LET GI a CC5RI) + 0.59387702
"570 LET El w (0.16573369E-24*RI) - 0.46152934E-20
580 LET E2 v (EI*RI) * 0,323616e9E-16
590 LET E3 = (EP*RI) + 0.3911897PE-13
"600 LET E4 a (E3*RI) - 0*104i64995E-8
610 LET ES = E4I*RI) * 2.9126338E-5
620 LET E6 = (E5*RI) - 0.5437996E-3
631? LET G2 v (E6*RI) , 0.59506112
65(e IF RI 4000 THEN 680
660 LET G0 • 5.I1026s.
670 LET G2 u 15.4404l * 00o0els(RI - 40e0)
6e30 IF F(S) 63 THEN 720
690 IF F(I) >= 20e0 THEN 749
70C LET Zl 0.2*((LOG(F(lib62.5)),LOG(2))
71e GO TO 750
'722 LET Zl a 0
730 GO TO 750
"740 LET Zl w 1.0
750 LET GM) a (Z1*(GI - 62)) * 62
760 NEXT I
765 PRINT "CORRECTION FACTORS IN DD AT ARC PADIUS *3982*
766 PRINT "FEET"
"7?0 PRINT "VRF.OUENCYil TAB( I IM)"CLASSICAL";BTAP(22):
771 PRINT "MOL.Ab!SOR. t"iTAlt36)*"TOTAL ABSORr"sTADC51)i
772 PPINT "EGA";TA3(63))',TOTAL CORR"

r 790 FOR I I TO 2A
802 PRINT F(I );TA15t8iS(I ieR21l110(1;TAB(22)EI )iPIt!Mil
"8i1 PRINT TAB (36)OCK(liEI)ileP.OteIITABCSIIGIiITYI63)I
C8-2 PRINT cKI).E(1ii.U2I1000),OCI)
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Table C-1. L.sting of the GE Air-Attenuation Corre:,tion Computer
Program (Concluded).

810 NEXT I
626 REM THE FOLLOWING CALCULATIONS APE FOR STRIP AREA
821 PRINT
822 PRINT
825 PRINT "ANGLE LOCATION"*"STRIP AREA FOR"3R2J
326 PRIWT "FOOT SPHERICAL RADIUS"
827 PRINT "(DEGPEES)"."SQO FT.)"
930 REM "MCI)" AND "N(I)" ARE ANGLES VHICH DEFINE THE ARC
831 REM ASSIGNED TO EACH MICPOPHONE. "P(1)" IS THE
840 VEM MICROPHONE LOCATION ANGLE,
845 READ FI*F2,F3*F4
846 DATA 1*5*3*1416*2*0.0174533
850 READ N
855 DATA 17
860 FOR I = I TO N
870 READ P(I)
"875 NEXT I
880 DATA e.)0,ioe.30,40.50. 60,70,80.9•0, 100#11e
881 DATA 12e, 13e, 140,15, 160
895 FOR I - I TO N
W90 LET MCI) a P(I) - (P(I) - P(2-I))1F3
910 LET N(I) a (P(I*) - P(I))IF3 *P(I)I 915 IF I w I THEN 917
916 00 TO 920
917 LET MMI) 3 P(C) - (P(I*I)-P(I))/F3
92e IF M(I) e THEN 940
930 GO TO 95e
940 LET M(1) 0
950 IF N(1) 180 THEN 970
954 IF I n N THEN 962
958 TO To 98e
960 GO TO 980
962 LET N(1) , P(I) * (P(I) - P(I-I))VF3
966 GO TO 980
970 LET N(1) 10eO
9860 LET 1C4) * FI4F2*R2#F3*(COS(H(I)*F4) - COS(N(I).F4))
990 PRINT P()),S(I)
995 NEXT I

t 1000 END
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:_ I APPENDIX D

1.0 SUMMARY OF THE ELLIPSOIDAL MIRROR DEVELOPMENT

Ellipsodial mirror (EM) measurrments of axial source intensity distribu-
tions were made for selected data points during the Task 3 test program.

This appendix describes the ellipsodial mirror technique as developed
for Task 3. Section 1.1 describes the mirror configurations and test set-up.
Section 1.2 discusses the mirror calibration. Section 1.3 discusses the data
processing proced res and associated numerical techniques. Section 1.4
describes data aisalysis procedures. Section 2.0 is an evaluatiou of the
ellipsoidal mirror technique and discusses theoretical limitatO.ons, data
acquisition and data processing errors.

1.1 MIRROR CONFIGURATION AND TEST SETUP

The ellipsoidal mirror is a directional microphone system in which an
"ellipsoidal dish (mirror) is used to focus acoustic radiation from a specific
source region in a jet onto a microphone placed outside the flow. Figure
fD-I shows a schematic representation of the system. The EN is mounted on a
remotely driven cart on tracks parallel to the jet ýixis. Surveys of the jet
are then accomplished by making continuous traverset along the length of the
jet. A microphone is placed at the primary focus of the ellipse, and the
secondary focus is placed on the jet centerline (and the mirror axis is
fixed normal to the jet axis).

All of the EM source location data reported in References 8 and 12 were
obtained with an 18-inch-diameter shallov-dish mirror (Figure D-2). In the
Task 3 program, this mirror was used for testing at the JENOTS freejet facil-
ity, while a new 34.654-inch-diaveter deep-dish mirror (Figure D-3) was used
in the jtt nv•lý., aa.echuii facility. A summary of physical and opeating
Scharacterii. offh t two vy waa shown in Figure 3-17, The nae deep-
dish mirror was designcd to have 4 larger diameter and increased vorking
disaticcv for improved low frqtueacy Verformance, In addition, a different

tmierphone orln~atlon is used. Vith the 18-inch tirror, the aicrophone is
i- nerttd through the rear orf the mirror ind directed toward the sourte
runlon. A "reverse mounting" fixture is -. ed on the deep-dish mirror (figure
D'-). ao thit the microphone can be turned and directed back toward the
mirror surface. This change was made to allow better resolution of high
frequuety data.

The saetup of the 18-•ith mirror at JNOTS it shovn in Figure D-5, and
the aetup of the deep-disah mirror in the anechoic facility is shoen in FPiure

6-6. Note that the picture in Figure 0-6 was takea priotto i nst•l•atiou of
the reverse mounting fixture in the mirror.
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Figure D-2. 18-inch-Diameter Shallow-Dish EM with
9-foot Working Distance.
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Figure D-5. Ellipsoidal Mirror Set-Up:1 at JENOTS,

ft

Figure D-6. Ellipsoidal Mirror Set-Up in
the Autchoic Facility,
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For each EM test point, data is recorded on magnetic tape over the full
length of an "outbound" traverse. The microphone signal, a DC cart position
signal and IRIG B-time code signal are all recorded using the standard
acoustic data acquisition system for the particular facility (JENOTS or
Anechoic).

1.2 MIRROR CALIBRATION

An ellipsoidal shape is used for the mirror surface because of its theo-
retical ability to resolve a point source of sound onto a microphone. The
ellipse has the property that the tangent at any point makes equal angles
with the two focal radii to that point. In the limit of high frequencies,
with wavelengths very small relative to the mirror dimensions, acoustic
radiation can be approximated as straight line rays and sound emanating from
a source at one focal point would be reflected to the other focal point by
any point on the surface. This focusing effect is characterized by the
mirror gain, which theoretically increases with the square of frequency
(6 dB/octave).

At lower frequencies, the wave character of sound becomes dominant,
and resolution of source distributions by the mirror is limited by diffrac-
tion. The "point", which is resolved onto the microphone, spreads into a
three-dimensional volume described by the frequency dependent diffraction
pattern of the dish. A slice through the three-dimensional diffraction
pattern along a plane parallel to the jet axis and normal to the mirror axis
yields the window function. This function represents the sensitivity of the
system to adjacent sources along the jet axis when the mirror is focused on a
given ;,t. The effect of diffraction is thus to smo•th details and raise
the overall level of measured dOstributions. The 'width" of the window
function is theoretically proportional to wavelength (inversely proportional
t" irequency).

The 1M measurement of power spectral density at an arbitrary axial
position in a jet can be expressed analytically in terms of a convolution
integral:

(X. G f P a) it. (f) 11 (x - tit) d(

wuerv P2 and P arc, respectively, the measured and actual values of mean
A quare gound pesgure, G is the mirror gain, and Ht is the diffriction window

function. In order to obtain the true acoustic pawer distribution for a
particular frequency, it is then necessary to solve (deconvolve) the integral.
equation for the excitation gignal at each axial position, given knnwledge of
the system (mirror) characteristics and the re'.potse (measured) signal. Thus,
each mirror ou,,t be calibrated to determioe its gpin and.window function
characteristics.

603

3L °
S... . .•,I .• ? ' . • • • _ . . . ..



While the mirror gain is described by a single value for each frequency,
the window function is actually a continuous function of distance from the
focal point in the focal plane. The window function for a given frequency is
mapped by placing a point source at the secondary focus of the mirror and
translating it in the focal plane (normal to the mirror axis), or, conversely,
by fixing the source and translating the mirror system. The gain is deter-
mined by fixing the point source at the secondary focus, and comparing
measured levels of the primary focus with and without the mirror present.
The algebraic difference (in dB) is the mirror gain.

Equation D-1 is strictly valid for discrete frequencies (1-Hz narrow-
band). However, to maintain consistency with farfield acoustic data, it isI desirable to analyze source location data in 1/3 octave bands, with the
necessary approximations made in the formulation of equation D-1. Thus, a
broadband source is required for mirror calibration, so that the window
function and gain can be determined on a 1/3 octave band basis.

Both of the ellipsoidal mirrors were calibrated in the anechoic facil-
ity. The teat setup for calibration of the 18-inch mirror is shown in Figures
1D-7 and D-8. The mirror was mounted on a remotely driven cart so that it
could be traversed past the stationary noise source, a 1/2 inch diameter
nozzle operating &t sonic pressure ratio. The nozzle was positioned with its
axis in the secondary focal plane of the mirror, normal to both the mirror
ay.is and the vertical tracks on which the cart moved (Figure D-7). A refer-
e•nce microphone (for gain calibration) was placed in the same horizontal
plane as the source, at the same displacement from the source as the mirror
microphoue and at 180" to the mirror axis (Figure D-8). The same basic setup
was used for calibration of the deep-dish mirror.

Calibrartion data was obtaioed for both mirrors over the range 0.4 to 40 kilz.
it each case, the mirror and reference microphone signals, the cart position
and ti•i code. were recorded over the full length of an "outbound" vertical
trlverse, The data from this traverse was then played back through the

appropriate filters and analyzed to obtain 1/3-octave band gains and window
functions. Tie results are summarized in Figures D-9 through D-12. The gain
of the 18-inch mirror (Figare D-9) is sen to follow the theoretical 6 dB/

I ~octave incr•,adc over a wide r~avge of frequencios. Figure D)-10 shows the
. iuidth of the window functions, defined as €the distance between points at 50%

of Ow peak value (0 d dovii) on either side, as normalized by tie wave-
leogths 'torrespondiog to 1/3 octave hand center frequencies. Again, it is
siotee that the theoretical trend (const.it normalited width) is followed over
a wtde range of frequciicies. CalXbration results for the deep-dish mirror
(Figu~res 1)-li and D-I"), while not showing as good agreeeint with theoretical

trends, do indicate higher gain and slighitly narrower window functions
t. relative to the 18-inch mirror.

1.3 DATA RKDUC'ION

Sllipsolda mir-or data reduction is accomplished as a two-stage pro-
cedure. The fi st s op is a relatively straightforward conversion of raw
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Figure LV-1. Set-Up of Mirror and Nouie Source for Calibration
of 18-inch LN.
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S~Figure 0-7. Set-Up of Mirror an~d Noise Source for Calibraciou•I of" 18-inch EM.
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iFgure U-8. Set-Up of Reference Microphone and Noise Source
for Calibra4ton of 68-0nch EM.
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analog data to digitized spectral distributions. The second step involves
nuwerical processing of these results to correct for the effects of mirror
gain and diffraction window function.

1.3.1 One-third Octave Band Analy_ýs

The initial stage of EM data reduction utilizes systems and procedures
developed for handling of aircraft flyover noise data in the General Electric
Acoustic Van (Figure D-13). The previously recorded EM microphone signal is
played back through a Honeywell 7600 28-track recorder, set up for IRIG
Wideband Group I operation. The playback signal is processed through a
General Radio Model 1921 Real Time Analyzer coupled with a GE/PAC 30 mini-
computer and a Terminent 300 printer/tape punch. Accurate event location is
possible through the use of a CGS Datametrics SP-425 Time Code Reader and a
CGS Datametrics Time Code Comparator.

The data is resolved into twenty-four 1/3-octave bands and averaged over
each of eighty consecutive discrete time stops, then digitized and corrected
for nonlinear frequency response and gain or attenuation of the data acqui-
sition system. The length of the time steps (integration time) and the fre-
quency range to be covered can be specified, within certain limits, to suit
the requirements of a particular test. Integration time, while remaining
constant during processing of an individual data point, can be set for 1/8,
1/4, 1/2, 1, 2, 4, 8. 16 or 32 seconds. A relatively short integration time
is required for accurate definition of the details of high frequency source
regions near the noitle exit, espeially for suppressor noazles. However,
for lower fre-qtw.cies. a longer ri•e step is generally necessary ti order to
allow coverage of the ntic.re aource region withia eighty steps and to assure
reasonable accuracy in resolution of the data (Figore 0-l4). An additional
consideration ig that tho uncertainty iW locating true aiial source positlo
increases with increasing intgration time since data is averaged oe r this
Interval, In order to accommodate both high and low frequency requiremonts,
eoach data point ia procosord twice, using two different integration titms.
,Thi eoacr values are detorminod from the desired spacing/eoverage and the
cart sped, Usaed an cth ,ystem characteristico ahohm in Figure 3-17, into-i1gratton timt of I and 4 gtconeg art ustJ for M data (rum, JENOTS (18-inch

mir'ror), uhtil 2 god 8-setond tlds dre uged for data from the aniechoic

facility (deep-dish mirror). Vie frequency ronge for data reduction, vhile
not as flonible as intiegration time, can be rogulltcd. Data can he rosolved
with twenty-four t/3-octave bands over a rango of SOla-10K li:, lOOH...aZOK 1
or 20011z - 40K ft. The range of 20011t - 40K II: is uusd for EI data raduction.

During chit stage of data reduction, a three-channel brush chart is also
pr.pared for each data point, shoving traces of mirror cart position, overall
sound level and time code (Vigvro V-15). Through use ot the titar code, an
average cart positiun can thus be determined for each of the digitized apectra.
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1.3.2 Numerical Processing

The second stagE of ellipsoidal mirror data reduction is the "correction"
of the digitized source intensity distributions for the effects of U..Lrror
gain and diffraction window function.

Noise source intensity distributions obtained with a physical focusing
device, such as the ER, are inevitably contaminated at lower frequencies by
the effects of wave diffraction. However, if the window functions are known,
the true source distribution can theoretically be determined from measure-
ments with the use of a numerical deconvolution procedure. Since diffraction
is a three-dimensional phenomenon, sources across the jet cross section, as
well as along the axis, can 5e "heard" when the mirror is focused at a given
point on the centerline. Thus, after deconvolution, the distributions repre-
sent total source contributions at each axial position (i.e., slice of jet
measurements).

Recall that the actual and measured source intensity distributions, in
terms of mean square sound pressures, are related by a convolution integral,
equation D-l, which is formulated approximately for a 1/3-octave band. Due
to the complexity of the problem, a numerical solution is mandatory. This
reduces the continuous (in x) physical problem to a system with a finite
number of degrees of freedom. In a numerical solution of equation D-1.
The definite integral is expressed as the summation of integrals between
discrete points within the continuous domain. The integrand is then approxi-
mated by a polynomial over each individual sub-range (e.q., trapezoidal
rule). This leads to a series of simultaneous linear algebraic equations for
each frequency band:

n
m 1 (f) - g (f) E hij (f) aj (f) (D-2)

In tensor notation, this is expressed as:

M(f) M g (f) H (f) A (D-3)

where the vectors A and M represent the actual and measured signals, respec-
tively, at discrete values of x while A is the matrix of window function
"coefficients and the scalar g is the mirror gain.

A non-homogeneous set of simultaneous linear algebraic equations has a
unique solution op.ly when the equations are linearly independent (i.e., when
none of the equations in th2 set can be expressed as linear combinations of
the others). The solution can be expressed as:

A ( (f) M M (D-4)
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although solutions are rarely obtained by direct matrix inversion due to the
monumental number of calculations required. For a linearl: dependent set,
the determinant of the coefficient matrix is identically zero and the inverse,
expressed as the adjoint matrix divided by the determinant, does not exist.
In this case, there is no unique solution, and the matrix is termed singular.

Deconvolution problems which occur in practice are often quite difficult
to solve because the systems of equations are ill-conditioned. In this case,
the coefficient matrix is "almost singular," with the value of the deter-
minant very close to zero. While solutions exist for these systems, they are
extremely sensitive to small changes or errors in the data. Thus, measure-
ment accuracy and choice of a deconvolution technique become critical. An
indirect, iterative solution may fail to converge if small successive correc-
tions result in large changes. Direct solutions can fail if accumulated
roundoff errors become significant.

The mode of operation of the EM is to make continuous constant-speed
traverses parallel to the jet axis. The data is then averaged over each of
eighty consecutive, constant time interval, discrete steps. In analyzing
results, the integrated spectrum for each interval is assumed to represent
the mid-point. Since the cart moves at (approximately) constant speed, the
equally spaced time intervals translate to constant axial spacing. Symmetry
of the window function and equal spacing of the assumed measurement locations
allow the matrix of window function coefficients to be reduced to a form:

h 1 1  h 12 h 13 h .

h 12 13 in hln12 11 12

Sh13 h12 hl h
- 13 12 1 *~* l(n-2)

hl 1 h (n-1) h 0-2) . . . (11)

which is symmetric and has equal elements along any diagonal (Toplitz matrix).
In this case, the matrix is completely defined by its first row, resulting in
considerable simplification of the numerical deconvolution procedure. It is
apparent from examination of the simplified matrix that the set of equations
will become ill-conditioned as the window function "width" increases relative
to point spacing, and the magnitudes of the individual elements approach a
con~mon value. This point is illustrated by the following example.

ConsLder the set:
a + 0.9 a2 = 1.9

0.9 a1 + a2  1.9
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The determinant of the coefficient matrix is IlI - 0.19, and the inverse is:

H-1= Ff :.26316 -4.7368]

L4.73684 5.263161

The solution is a1 = 1.0, a 2 = 1.0.

If the equations are altered slightly, to:

a1 + 0.9 a2 - 1.9

0.9 a1 + a 2 = 1.899

The solution is now a1 = 1.00474, a82 = 0.99474. This is a relatively small
change. Now, consider the set of equations:

a1 + 0.999 a2 - 1.999

0.999 a1 + a2 = 1.999

In this case, the determinant is liii 0.001999 and the inverse is;

500.25 -499.7T]

_499.75 500.251

The solution is again a, W 1.0, a2 = 1.0.

It is apparent from the magnitude of the elements of Ij that any small
changes in the right-hand-side terms (response signal) will be greatly magnific
in the solution. Thus, when the equations are altered slightly to:

a1 + 0.999 a2 - 1.999

0.999 a1 + a2 - 1.998

the solution is now a1 M 1.49975, a 2 = 0.49975.

The major conclusion to be drawn from this discussion is that there is a
practical limit to the width of window function which can be analytically
"removed" from data. The critical dimension is the ratio of window function
width (however defined) to point spacing. Thus, all other things being
equal, it is as difficult to correct high frequency data at very close spacing
as it is to correct low frequency data at wider spacings. There is no single
magic number for the width-to-spacing ratio. Rather, it depends on the
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degree of accuracy that is required in the calculation, the magnitude of
errors and/or noise in the input data and the solution technique being used.
The reported analytical error analysis provides further insight into this
question.

A comparative study of numerical techniques for accomplishing the de-
convolution of directional microphone data was made by Schlinker, et al.
(Reference 30). Three different methods were coasidered:

I. Integral transform

2. Matrix inversion

3. Relaxation

Based on an evaluation in terms of resolution, sensitivity to noise and
amount of computation, the relaxation procedure was found to be superior to
the other techniques. Following a review of the results and recommendations
of this study, the relaxation technique, which is actually an adaptation of
the classical point Jacobi iterative method for solution of simultaneous
lintar algebraic equations, was chosen for use in processing source location
data obtained with the ellipsoidal mirror.

The initial applications of relaxation to EM test data resulted in
rather severe problems with non-converging solutions, for most frequency
bands, due to ill-conditioning of the equations. In response to these prob-
lems, the solution algorithm was modified to limit the magnitude of correc-
tions from one iteration to the next and to stop the iteration if and when
the solution began to diverge. The incorporation of these modifications
resulted in somewhat better convergence, although solutions still contained a
relatively high degree of scatter. Another change was made by including a
generalized relaxation factor in the iterative correction term. This allowed
a solution to be obtained by over- (or under-) relaxation, if desired.

Since deconvolved data still exhibited a high degree of scatter, despite
improvements made to the relaxation algorithm, alternative procedures ,e
considered. A direct solution technique was discovered during the course of
the error analysis, Appendix E. This method, due to Levinson (Reference 31),
is applicable to symmetric, positive definite Toplitz matrices. Although the
window function matrix is symmetric and Toplitz, it is not necessarily posi-
tive definite, even though all of the elements are positive. However, the
potential savings in computation and the advantages of an "exact" solution
suggested that this approach should be considered. A somewhat more efficient
formulation of Levinson's recursion algorithm, presented as a FORTRAN sub-
rotiLine in Reference 31, was evaluated after a coding error (In Reference
32) was found and corrected. The evaluation revealed that the technique did
indeed require less computation than relaxation, while apparently producing
much more accurate solutions. The latter fact was determined by "reconstruc-
ting" input data using equation D-3 from the known mirror gain and window
function in combination with the deconvolved solution from each method. The
actual input data was then compared with the two sets of "reconstructed"
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data. However, it was found that solution obtained with the Levinson tech-
nique contained signiiicantly more scatter than was found in solutions ob-
tained by relaxation. Thus it became apparent that scatter was at least
partially due to small fluctuations in the input data, which were magnified
by the deconvolution, rather than just being the result at a non-converging
solution. This meant that it should be possible to obtain more meaningful
results by increasing point spacing to reduce the degree of ill-conditioning,
or by applying a pre-smoothing procedure to lessen the impact of errors
and/or noise in the input data.

Data which has been properly smoothed will be less influenced by random
errors and should more nearly represent the underlying trends then will raw
data. Thus, pre-smoothing of measured data can be expected to significantly
reduce the scatter in deconvolved source distributions. It should be noted,
however, that this is not a magic cure for "bad" data and that care must be

-' i=exercised to avoid the loss of important details due to indiscriminate smooth-
ing. Rather than being a standard procedure, smoothing should be used only

* Iwhen needed and when the point specifically required to desensitize the
deconvolution with respect to small changes in data is too large for satis-
factory definition of the measured distribution.

When the point spacing of sample EM data was doubled by averaging (com-
bining) adjacent points, the slight improvement in scatter did not warrant
the resultant loss of definition. Therefore, a study of smoothing procedures

* was undertaken. Source location measurements are resolved into 1/3 octave
band spectra for several successive time steps, each step representing a
discrete axial posititon in the jet. This spectral information is then recast
as axial power distributions for given frequency bands. At this point the
data is converted from dB to mean square sound pressure. It is these distri-
butions of P versus x which must be smoothed.

There are several techniques available which could be used for pre-
smoothing. In Reference 30, for example, data is numerically convolved with
a smoothing operator prior to processing. Although such an approach would

,I appear to merely result in the substitution of an analytical window function
I for the physical one, this type of procedure was nevertheless considered.

However, an evaluation of the technique failed to show any significant les-
sening of scatter in the data. A great many smoothing techniques use some
form of least squares estimation. A common approach is to fit a polynomial
of relatively low degree (say a parabola) to a set of 2N + 1 data points
(= five or seven). The ordinate of the approximating polynomial curve at the
central point of the set is then taken as the new "corrected" value of that
data point. Successive applications of this procedure, accomplished by

* indexing the set through the data one point at a time will result in a
* smoothed distribution. Further smoothing can be achieved by repeating the

entire process. This technique was evaluated with over a dozen combinations
of the three parameters:

1i. Degree of the least squares polynomial

2. Number of points in the set

3. Number of passes through the data.
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The results of this evaluation showed very significant improvements in scatter.
The addition of increased point spacing, in combination with smoothing, did
not have an appreciable effect. From the viewpoint of mathematical rigor,
presmoothing is not a desirable step. However, as a practical matter,
smoothing can be a useful technique for removing the effects of random errors
from a set of data, and, in this way, can enhance the fidelity of deconvolved
solutions. Also, the small changes in dB levels resulting from limited
smoothing of the p2 distribution seem almost insignificant when compared to
the potential magnitude of measurement and sampling errors.

The studies of smoothing and deconvolution techniques have led to the
adoption of improved data reduction procedures. The best results have been
obtained using 2-7-3 least-squares smoothing (second degree polynomial, seven
points, three passes) in combination with the modified relaxation method. It
has been found that, for the smoothing techniques under study, application of
the Levinson technique still results in an acceptable level of scatter. It
is considered preferable to use relaxation with least-squares smoothing,
rather than attempting more extensive smoothing for use with the Levinson
procedure.

1.4 DATA ANALYSIS

Ellipsoidal mirror data cap be interpreted as axial source intensity
distributions for individual 1/3 octave bands, or as source spectra at dis-
crete axial positions. The results are most readily summarized in terms of
the axial location of the peak intenvity for each frequency band. This is
generally expressed by relating Strouhal Number (center frequency normalized
by jet diameter and velocity, fD/V) to normalized axial position (x/D).
Trends in the data can then be established by comparison of the summary plots
between different nozzle configurations or operating conditions.

A typical data point for a conical converging nozzle was chosen for
detailed examination as an illustration of EH data analysis. The sample case
is a 3.56" conic nozzle operating statically at a velocity at 2253 ft/sec.
This data was obtained on the JENOTS freejet facility with the 18-inch mirror,
-it a traverse speed approximately four times the value shown in Table 3-17.
The data was processed at both 1/8 and 1-second integration times and decon-
volved using 2-7-3 smoothing and modified relaxation. The data obtained with
1/8-second integratitn time is used to determine high frequency source dl-i-
tributions, while the 1-second data is used for lqw frequencies. The "di-
viding line" between the two is defined, case by case, from the results of

the integral closure test. Far-field noise signatures are calculated from
the two measured source distributions, and these predictions are then checked
against actual farfteld data to determine which gives the best results. The
integral closure results (Figure D-16) indicate that the 1-second data should

be used over the range 1 to 20 kHz.

Figures D-17 through D-20 show axial power di~tributions, obtained from
1-second integrations, for 1/3 octave bands centered at 16, 6.3, 2.5, and 1
kHz, respectively. In all four figures, the raw data and processed data,
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with and without presmoothing, are shown. The presmoothed data are seen to
contain very little scatter, while retaining the 4asic trends of the un-
smoothed data. As expected, the deconvolved distributions differ from the
"as measured" distributions only in level, at higher frequencies, while the
shapes of the curves are noticeably different at the two lowest frequencies.
There are two distinct source regions apparent in the axial power distri-
butions. At higher frequencies, the upstream region is dominant. With
decreasing frequency, the peak source location (in the upstream region) moves
downstream and the region broadens somewhat. At the same time, the down-
stream region is increasing in intensity to the point where the two sections
are of approximately equal importance, with the downstream region barely
dominant (Figure D-19). This phenomenon explains the seemingly discontinuous
shift of the peak location to a high X/D at low frequencies (Strouhal numbers)
in Figure D-21, which shows the peak and"3 dB down" curves for this case.
It is interesting, and perhaps important, to note from Figure D-21 that the
source intensity is still within 3 dB of the peýak at X/D greater than 40 for
Strouhal numbers below 0,4, The fictitious upturn at the "tail end" of the
deconvolved source distributionn (Figares D-17 through D-20) also resvlts
from the-presence of addi-tional sources downstream of the last measurement
locat-ion. These irdications of the'sizable extent of the noise-producing
region could have signiticant. impact oni practical, as well as theoretical,
considerations of jet noise. .

Typcal spectra in the upstream and downstream source regions are shown
in Figures D-22 and D-23, respettively. Each figure shows the "as measured"
spectrum, as well as the deconvolved spectrum, with and wfthout preamoothing.
Also shown is the spectrum after smoothing and removal of mirror gain, but
before deconvolution. Reductions in scatter in tne deconvolved spectra, due
to premoothing, are obvious, Theso figures also illustrate the relative
effects of mirror gain and window function on censured source spectra4
Mirror gL-in icreases with frequency (approximately as f 2 ) while an apparent
gain due to vhe window fuoction has a r2ciprocal trend. Thus, it is neces-
sary to, make both corrections in order to obtain unbiased spectra.
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2.0 EVALUATION OF THE EM TECHNIQUE

As in the case of any measurement system, it is necessary to assess the
potential limitations and sources of error in the application of the ellip-
soidal mirror technique. These can be separated into three distinct areas:

1. Theoretical limitations

2. Data acquisition errors

3. Data processing errors and limitations

In the realm of theoretical limitations, there are several items to be
considered. Since tht, EM senses farfield acoustic radiation, measurements
are affected by propagation phenomena such as convection, refraction, and
turbulence scattering. Thus, even though these effects are minimized by
alignment of the mirror axis normal to the jet (source) axie, it is still
only possible to define "apparent" source distributions. In addition, there
are limitations to the range of frequencies over which the M! provides mean-
ingful data. These are dependent on the exact physical characteristics of
the system in use, There are two potential limits at low frequencies. One
occurs when the ratio of working distance to wavelength falls too low and the
mirror is operating in the acoustic neorfield. The other occurs when the
ratio of aperture diameters to wavelength falls too low and the mirror Is
unable to focus incoming waves. At high frequencies, the system is limited
by microphone frequency response/directivity and by the dimensional toler-
ances at the mirror. The latter limit it reached when deviation from either
the theoretical mirror surface contour or the focal point location become
appreciable fractions of wavelength. It should also be noted that, since the
width of a 1/3 octave band is proportional to the contour frequency, the
formulation of equation D-1 to terms of 1/3-ectave bands may not be a valid
approximation at higher frequencies due to the large bandwidths.

it addition to the real or potential problems generally associated with
acootic data acquivitioat, there are particular sources of error associated
with the mode oft opsrdtion of the Mk. As described in Section 1.1, muasure-
witts are wide while the mirror is slowly traversed parallel to the jet "is.
in data reduction, the signal it resolved into 1/3 octave bandst averaged

over discrete time steps and digitized. Since the IM is moving during these
time steps, the digitized spectra represent averages over sot; distance,
This limits the resolution capability of the rtrrtr to thu vidth of an mdi-
vidual time step. Since the averaging time must be long enough to allow for
extraction of a statistically valid simple (Figure 1-10), tihis distance Cam
be decreased only by a reduction in the traverse speed. Mirror misaligaunt
and improper location of the microphone (relative to the primtry focal point)
are also potential sources of error during data acquisition, if themirtzor
axifs is not normal to the jet axis, the window ftunction is affected, beco"i#g
increasingly skiwed as the mirror is tilted. Similarly, the measured data is
distorted If the microphone is not properly located at the focal point.
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The major sources of error encountered in processing EM data are-L

1. Statistical errors due to insufficient averaging time.

2. Enhancement of ambient or electronic noise, or of statistical
measurement errors, due to an ill-conditioned window function
matrix.

3. Limits on achievable resolution due to numerical instabilities in
the solution of an ill-conditioned set of equations.

4. Errors induced by uncertainty in window function measurements.

A discussion of these errors is included in Appendix E, along with some
simplified numerical examples.

2.) INTEGRAL CLOSURE TEST

An important test of a source location technique is to see if a measured
farfield noise signature can be calculated from the measured source distribu-
tion. This test, referred to as integral closure, does not guarantee that
the source measurements are correct since a given farfield signature could be
generated by any of a number of different source distributions. However, it
does provide some confidence in the results and can be used to identify
ranges of variables for which a given technique is definitely not valid. For
example, the results of integral closure checks on EN measurements reported
in Reference 12 showed that it is an extremely valuable tool for determining
the proper choice of integration time and for evaluating the range of fre-
quencies over which the EM appears to yield valid source location data.

The farfield signal is predicted by logarithmically uming, (integrating)
the deconvolved source intensities (dB per unit length) over the length of
the jet. for each 1/3-octave band, after inverse square law and air attenu-
ation adjustments have been made to correct the data to standard day con-
ditions at the desired farfield position. The formulation of Rference 33g
with an extrapolation to frequencies above 10 kMau is used to calculate air
attenuation corrections. The 90" farfield microphone is always chosen for
closure checks since measurements at this location at* known to mot accu-

rately reflect source generation mechanisas.

An integral closure check of 10-inch tirrvr usesuremnets on a conical
converging nozzle vas illustrated in Figure D i{., Although results vary from
case to case, the overall conclusion drawn ftt.. .•te l closuret heeks is
that, as a minitm, the deconvolved source distributions geaerally apper to
be valid over the following-range of freikuenclass

Mirror Freiuency.Ranie

18" sWhallow-dish I kJU f < 20 kW

34.654" deep-dish 00 HA f -C 10 kEz
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2.2 POINT SOURCE EXPERIMENT

The measurement of a point source is a critical test for any noise
source location technique, since the results can be used to infer the accu-
racy of the method in defining discrete sources and in discriminating among
adjacent distributed sources. Although the window function width indicates
the inherent resolution of a particular device, it is possible to enhance
this capability with the use of numerical deconvolution procedures. Thus,
the performance of a given source location technique is strongly dependent on
the adequacy of the data processing routines. In the idealized case where a
closed form solution of equation D-1 is possible, the function representing
the measured point source distribution is resolved identically to a Dirac
delta function, which is the analytical representation of a point source.
However, a numerical solution will only yield an approximation to this result.
The width of this deconvolved distribution is an accurate measure of the
resolution of the technique.

An evaluation of the ellipsoidal mirror technique was wade, using data
* obtained during calibration testing of the deep dish mirror (Section 1.2),

The measured 1/3-octave band source distributions were first fitted with
least-squares polynomial curves to reduce the influence of random measurement
errors. The modeled data were then deconvolved using a modified relaxation.
'Typical results, for the 490z 1/3 octave band, are shown in Figure D-24.
Note the relatively minor adjustment of measured data points due to the
introduction of the polynomial model. The deconvolved distribution, while
not a delta function, shows a marked improvement in resolution relative to
the "raw" data. The overall results, illustrated in Figure D-25, indicate
that tht achievable resolution is an approximately constant fraction of
wavelength. 1The point source can be located (within 3 dB) with a tolerance
a'of 0.6 A. While this is a five factor of Improvement over the unproceused
results, it is not indicative of a precise Aasurement. For example, at 1
kkliz, the error band is approximately 1 8 inches. The numerical study of the
18" mirror, which was conducted as part of the error analysis (Appendix B),
indicates that it should be possible to achieve significantly better resolu-
tion than this with the proper numerical procedures. This indicates a need
for further study to identify and implement a better nutrmrical technique for
deconvolution of ellipsoidal mirror data. It should also be noted here that
it is still important to optimize a mirror design for a narrow window fume-
tiou, since, as a practical mattor, precise uuietical deconvolutcio Is dtf-
ficulta to accomplish.
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APPENDIX E

ERROR ANALYSIS OF THE ELLIPSOIDAL MIRROR TECHNIQUE

1. MODEL FOR ELLIPSOIDAL MIRROR ERROR ANALYSIS

An analysis is developed herein of the window function removal technique
for the ellipsoidal mirror. This analysis is based on a model for the device
that describes the way in which acoustic sources are combined by the mirror to
yield the measurement values. The following assumptions are made in the
construction of this model (see Figure E-1):

1. The Jet is composed of N statistically independent acoustic pressure
sources equispaced along a line, x.

2. The H-measurements are made along a line, y, parallel to x, with the
same spacing as the sources.

3. The measurements are the me;,n square outputs from a filter of
sufficiently narrow bandwidth that the acoustic response of the
mirror may be assumed constant for any frequency In the filter
hand.

4. The quantities of Interest are the mean square values of'the
pressure sources.

Wang the geometry illustrated in.Figure E-1, each measured pressure
signal to equal to a linear combination of the pressure surcess whichuey
be Seen by APPlication of the superposition principle, of atcouastics. The
woights art determined by the p~re.!sure response of the ellipsoidal Uirror
(EH). Thus:

-where om(t) It the mLth twasured pressure stiga4

tWIs the uth source pressure signal and-

b(a,a) Is the pressure response of the EN betueen the ft~ weasure-,
cent poisition and the t~tb source posifion,

The mean square pre.~urt measuremouta, torrespod~iv4 to the outputs of
a singlo stilter, A CAt third octave- aalyser for ex olet afe $Lv#A byz'
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Sm = IS. 1)I2 S S b(m,u) b*(m,k) Pn P% (E-2)
nril k-i

where * indicates the complex conjugate.

Since the sources are assumed to be statistically independent,

P* PM a Pn 6(n-M)

where 6(a) is the Kronecker delta function.

Thenz

S z b(mu) b*(mk) Pn 5(n-k) jb(mn)12 in (E-3)

Finally, deftinng (10,D)( as tile Power response of the EN between meuurement
point m and source position n,

: a~an) -lb~mn~jZ(2-4)

so that --

H
S (mNO) PO,

Soar@ the filter mm"h squaro pres"aswuree Mlusntt.

Ph gte the ftn soura strengths .

a a(a,nA) a the po~r respon"• ot the EM betwen U4 ,A% .

This •ay be rittin estflaot- loa

.vhre $S it the vector of Ba-sented poae", P1 .4 the .nator of H .source .
paver# k#nd A is the matriM of pover repoavle htpertfotm the
operations Itdicated ito Equation •5-S.

Since the rtressur fluetuations§ In the jet AIe iftd, the ueesu ra
vill also be rewdoo. To Include nudes dat effectst At the sude, W W llI h
sodtfatlon to the defst tIoe of S andm V.- a na04ry. WiUS as.. t -e
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vector of actual random measurements, P as the vector of true source values,
and c as the vector of zero mean random variables represerting the uncertainty
in S, the random data model becomes:

S = A P + c (E-7)

To obtain an estimate of the source distribution, which will be denoted as
P, From the measurement vector S, the Fisher theory of estimation will be
employed. This method is detailed in Schweppe, Reference 32, and provides
the unbiased estimate of P with the minimum variance (statistical error)
under the assumption that before the measurements are taken, P is completely
"unknown. Under this assumption, P may be shown to be

P (ATR-IA)-l AT R-lS (E-8)

The covariance matrix of P, defined as

K= E _pp ýpp

is then

Ii • (ATR-IA)-l (E-9)

where

R AE eT

is the covariance matrix of the statistical error, €.

In general, to evaluate Equation E-8, one must know R. However, if it
is assumed that there are as many measurements as sources, N X , A is a
"square matrix. Manipulating Equation E-8,

P (ATR-lA)"l ATRR'.S A-lRA-TATR-'S A-1S (E-10)

Thus for this case, knowledge of the error covariance matrix is not required
and the estimate is formed by inverting the A matrix. Under the above assump-
tioni,. P is unbiased and has minimum variance. In the following uncertainty
analysis it will be assumed that A is a square matrix.
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2. TECHNIQUES FOR COMPUTING THE ESTIMATE AND INVERTIBILITY OF THE A MATRIX

To compute the estimate of the source distribution given in Equation
(E-1O) it is necessary to solve the equation

S=AP (E-Al)

where S and A are given.

This may be done by:

(1) Iterative approaches such as the Jacobi or Gauss-Seidel procedures.

(2) Direct iuversion of the A matrix.

(3) Direct, closed fonr solution of Equation E-11, taking advantage of
a special property of A yet to be discusseed.

Care must be taken in the solution of Equation E-11 because of its typical
size (80 x 80) and the fact that A wil.l generally be ill-conditioned par-

ticularly for low frequency condtious.

• The iaver' ibility of a matrix r-an be parameterized by its condition
number. The ý 3,', ton number is an indication of how much the perturbation
of an element ,of A w;11 affect ithe values of the elements of A-1. If the

S~condition n,|mber is large, small changes in A, such as those that occur

because of numerical truncation and roundoff errors, will drastically affect
the value of A-1. Conversely, if the condition number is small, small
perturbation of the elements of A will have only small effects on the elements
of A-1. Zwicky (Reference 34) suggests that if the condition number to less
that% 1000, a matrix is easily inverted, and if it is more than 1000 special
techniques should be employed. Zwicky defines this condition number as

whore Amax. i the maximum oigenvalue of A and Amin., is the mininum epen-.
value of A.

To examine the of feet of this on the window function removal tewhnique,
consider the following approxaimate window functioa matriix.

^A- (l-p) U+pI (+-p)

where I it the identity m.trix and U$ is a matrix of all le. -Thu the
approximate window function .has the form:
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U (-p) (l-p) • • • (l-p)
(l-p) I (l-p) - • (1-p)

A •(E-14)

(1-- (1-p) . . .. (i-p) 1

It may be shown that the eigenvalues for this choice of A are:

-1 of these
IP (there are n-i of these)

n - p (n-1)

Thus,

n-p n-(n-iU- n pK - -- (n-1) (E-16)
P P

The table below gives the value of u for various values of p with u - O.

Condition Number for N - 80

721 0.1
987 0.075

1521 0.05
3121 0.025
7921 0.01

15921 0.005

It the on and off diagonal elements of tise matrix differ by lose than
0.075, problems may be expected in computing A- 1 .

Other observations can be made from the result in Equation E-16. For
large n atid stll p (the case most relevant to ellipsoidal mirror window
fuu•€tioi removal),

P

Therefore, the ,-ondition number to nearly proportionial to the order of A.
The condition n.imber can he Improved by reducing the number of measurement
locations. Ala,. p should be nearly proportional to the. reciprocal of the
beamwidth t;or sp itcally broad window fntualons. Thus, the condition number
ahould be proportional to the beawidth of the mirror.
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The Jacobi method is used to solve Equation (E-11) in the numerical
processing of EM data. This method is in general use for solving equations
of this type and is often recommended by numerical analysts. Direct inversion
of the A matrix was examined in this study. Because of a general notion in
numerical analysis that if one can directly compute A-1, then the Jacobi and
Gauss-Seidel methods will almost certainly work as well if they converge.
Aiso, A-1 is required to evaluate some of the expressions to be developed
later herein.

Two methods were evaluated for inverting the A-matrix. The first was a
"Maximum Pivotal Gaussian Elimination" routine taken from Carnahan, Luther,
and Wilkes (Reference 35) and the second was a program for inverting symmetric
matrices based on the matrix inversion theorem in Appendix A of Schweppe
(Reference 33). Both routines were able to obtain at least three place
acciracy in the inverse, but only when the computations were performed using
double precision arithmetic. Further precision was obtained by taking
advantage of the superior word length of the CDC-7600 computer. The test
case used in the evaluation was the inversion of the 1.25 KHz windnw function
from the 18-inch ellipsoidal mirror at 0.375-inch spacing. The worst cast
conditions of t"e 1.23-KHz window function at 0.375-inch spacing and the 1.6
i(Hz window 'unction at 0.125-inch spacing were also examined. The program
based on the "Schweppe Theorem" ran in considerably less computer time
(because the assumed qymmetry of the window function was exploited) than the
Maximum Pivotal program and for this reason was chosen as the preferred
ituversi in procedure.

A method was also discoveý'ed for the direct solution of Equation E-11.
This method uses the fact that if the A matrix is symmetric, then it is com-
pletely defined by ±ts firrt row. This procedure was reported by Levinson,
Reference 31. An evaluation of this approach was not made, but examinms*Ion
of the algorithm indicated that t'ere may be a computational savings over
the Jacobi iterative method. This, coupled with the advantage of obtaining
an "exact" solution (over the "converged" approximation of the iterative
method), suggests thac the approach Jihold ue evaluated. A Fortran subroutcine
for performing the required zalculations appears in Robinson, Reference 32.

The major conclusi'n or this section is that It should be possible to
accurately ool';e Equation F.-.l for measurement spaciags as small as 0.125
inchoo if sufficient care is taken (su.h as use cf double pr,cision arithme-
tic) in uriLing the cnwputation bubroutines, While thp Jacobi procedure
should yield adequate results, a closeu-form solution procedure is available
and this shoul.d be evaluated.

3. ESIMTORVARIACE ANDBItIS

Under the a~sauptiots that led to the m•od.l of Equation E-7 and estimator
of Equation E-10, the estimate was unbiased and had covariance iattizs

1- A-l-RAT
P



where R was the covariance matrix of the measurements. An ideal source
distribution measurement is defined as P, based on a direct observation of
the sources. Then

p_ + (E-19)

is defined, where y represents the uncertainty in P caused by finite observa-
tion time and bandwidth. One can do no better than a direct observation and
therefore:

K-rin K E {jXXT} (E-20)

represents the minimum possible variance achievable. In the simple model of
Equation E-7, the measurement uncertainty, ., is caused by the uncertainty
in P, and in going from Equation E-6 to Equation E-7 it is implied that

SA y (E-21)

Therefore, it follows that

R A K AT (E-22)

and from Equation 18,

K- A-1 (AK AT) A-T - (E-23)

Thus, independent of the window function, the estimate achieves the same
variance as a perfect observation of the source distribution. If p(t) is
assumed to be a normally distributed random vector, then P is a Chi-Square
random vector. Th: variance of a measurement Pn is

V-A (E-24)

and a 952 confidence statement on Pn is:

"The-true value of On which is Pn must lie between Pn (2 BT)/x•nag
and Pn (2 BT)/X•.9 5  with 952 confidence where B Ii the bandii t 'of
the one-third-octave Ilter and T is the integration time."

The curves in Figure E-2 may be used to determine the plus and stau 951
conf Ldencit limits in dB for Pnu

Anotler effect must be considered to complete the analysis of the
variance a.nd bi 's of the estimate. Generally ambient noleo will be present
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in the enclosure in which measurements are made. In addition, instrument
noise originating from the tape recorder, etc., will pollute the measurements.
The effect of these noises is to add a bias error to the estimate as well as
increase the variance. To evaluate these effects, the model is modified to
include a vector of measurement noises W which are assumed to be independent
of the jet sources so that

E _EWT} 0 (E-25)

The new model is

S - AP + e + W (E-26)

P - A-1 S 
(E-27)

as the estimator for P. Note that the expected value of P is nov

ElI { P u + A-1W (E-28)

Thus the estimate has the bias A'-W. For the bias to be negligible,

P >> A-1 W (E-29)

This says that the 'estimated" source distribution with the ambient noise
as an input to the estimator must be significantly less than the true source
distribution. Equatiun E-29 suggests that the following procedure would be
useful in evaluating the bias error in 24 data:

1. Measure the ambient noise using the standard data recording
procedure.

2. Use the data reduction program to obtain

P A-i W

3. oparev to P's obtained from the analysis of the jet date.
-ot P means the bias error is negligible. (Here 9c means about 3

to 6 dB).

Bias in the estimate due to acoustic sources iq difficult to bound
-- because of the gross variations in the magnitude and sign of the elments of

A-1. Such bounds have so far been too gross to be meaningful. A special
and important case can be treated however. This is when the added noise
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comes predominantly from the instrumentation (such as the tape recorder) and
this dominates over the acoustic background noise. For this case it is
reasonable to assume that

W =U W (E-30)

or that the noise in each measurement has constant mean square value where U
is a vector of all "one's". For this case one must have

Pn " (A-1 UIn W (E31)

where (A-lu]n can be seen to be the sum of the elements of the nth row of A-1.
Another way to write Equaticn E-31 is in terms of a Signal to Noise Ratio
(SNR). This gives

SNR - 10 00 a) >> 10 logl0 (A-i Ujn (E-32)

Some typical values of 10 1o810 (A-u)n are given In Table E-1. The bias
error is more of a problem at the higher frequencies where the A matrix is
well conditioned. As the A matrix becomes more siagular, the sum of the
elements of each row approaches zero and the sensitivity to bias error is
reduced. The SNR given in Equation E-32 is not the recording SNR, but
relates to the strength of the source distribution. The presence of bias
error is best determined by the test given previously.

While the bias error might be small, the effect of ambient noise on the
variance of the estimate may not be small. This effect may be determined by
evaluating the variance of the estimator asumaing the new model for the EM.
With KW as the covariance matrix of W,

"'A A-1 AT + CW) A-T

E -33)

+ + A-1 A-T

If as before, it is assumed that the measurement noises are uncorralated and
equal in magnitude,

f2
K 1 0 1 W2iBT (-4

where W is the mean square noise power in each meauement, and !(t) is th.e
assumed Gaussian noise vector. Thus

Sj + A-1 A-T W 2/BT

."i
". . ,



Table E-1. Sum and Sum of Squares of Row Elements of
Typical A- 1 EM Matrices.

Sum of Squares of

40th Row*
Frequency Distance Between Sum of 40th Row*

(Hz) Measurement Actual 10* 1810 Actual 5 1o810

1,250 0.375 0.00292 -25.35 15269.8 20.9

1,600 0.125 0.00127 -28.9% 83684.7 24.6

1,600 0.375 0.00446 -23.51 9298.4 19.8

1,600 0.5 0.00635 -21.97 5230.4 18.6

63,000 0.375 8.976 9.53 7633.0 19.4

The A-matrix was of dimension 80 x 80
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* and the individual estimate variances are

VAR{I u" VAR{IP 14, + [A-lA:-TI U.n WZ/BT (E-35)

where [A-IA-Tlnn is the nth, nth diagonal element of Al1A"T. With the

substitution used previously,

VAR i P } - p2/BT (E-36)

and,

Pn >> (A'dA-T] 1 / 2 W (E-37)
n,n

or in DB, the "Signal to Noise Ratio" defined as 10 log10 (PnIW) must be

SNR >> 5 lOgl0I [A-lA-T]u,n (E-38)

if the noise variance is not to dominate the source distribution variance.
Note that [A-lA-T]nn is Just the sum of the squares of the elements in the
nth row of A-1 if A is symmetric. Thus while the sum of the elemonts of a
row may be near zero, implying a low bias error, the sim of squares might be
very high, implying a drastic increase in the variance of the estimator.
Values of the right-hand side of Equation E-38 are tabulated in Table E-1
for some typical cases.

The beat way to evaluate this error is to approximate P by P. and com-
pare the value obtained from the estimation procedure with the ambient data
before applying the analysis procedure. If the condition in Equation E-38
is satisfied, it is safe to use Figure E-2 to specify the confidence limits.
If this condition is violated, the error in the estimate is probably much
worse.

24. E RRORS INDUCED BY WNO UCIN ESM M UPRAM

In the previous sections perfect knowledge of the A matrix (the matrix
of window function values) has been assulsed. However, In the case of the
EN, the elements of A are determined by a series of measurements, containing
uncertainty, followed by some sort of modeling procedure which hopefully
reduces this uncertainty. ,The errors in the elements of A cause an error in
the estimated value of P, P. The purpose of this section is to evaluate the
variance of P due to this source of error. The simplifyIn6 assumption is
made that there Is no measurement uncertainty present, or that c - 0 in
Equation E-7. A total variance Including all of the effects may be deter-
mined by summing the variances of the individual effects.

......................



Employing the above assumptions,

S A (w) p (E-39)

where we is the vector of unique elements in the actual A matrix. The actual
matrix-used to estimate P will have values of W different from wo. Defining

W wo + •W (E-40)

and having as the estimate:

P - (l W1) s-A-1 (W) A y o) (E-41)

If Sw is assumed to be "small", the above may be linearized to find the per-
turbation in P, which will be called 6P, caused by the error in W, 6w. Then

P_- Po + A-1 (wo) A (we) P + VT tA-l )A(wo) P] 6gj (E-42)

Observing that

P0 A-1 (w_) A (wo)P P (E-43)

yields

6P V (A'1 (A) A (we) (E-44)

as the error in ( _ Pdue to a small error in W. Since A'(W)A w()• is a vector,

VT (Al(W) A P•1•
*W

S(A'I(QIA(w--P.°)P-l1 (A-l(-W) A w(ýt)Po)1

- (A4l(W)A(W%)P 0)~ ~ (A-1 (W) A (WO)P 0)~
awl n own-
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Where ( )k is the kth row of the enclosed vector. Since 3/aWk ( )h "
(/Z/Wk )i, and since

•-•kA-1 (W•. A A-( w) A_ 'wo_ g° (E-46)

Then:

vWT [A-1 (W) A (,o) PO]

(E-47)

[ -A-1 (w) a (A(W) I o . A1 l (wo) • [A (,)] Po

-A-1 (yo) -2- (A L9]Poj [A •( •)

If it is assumed that A is a Toplitz and symmetric matrix, then AW may be
wri tt en

W(l) ..... W(n)
W(2) ,W(1) ,W(2).W(n-l)

A()- (E-48)

t .

W(n) . . . W(2) W(1)

where W is the defining row of the Toplitz matrix. Thus

[A(W•)ij W(li-JI + 1) i -1 , . . 4 (,.49)
J-i.. . N

A I() -6(ji-jI + - k)
[~.

K. it i

It it is assumed that 6v represents a random errors and the model wsed for
Wo is such that

E.,) 14(
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Then the covariance matrix of the estimate due to the uncertainty in w may
be written

Kp A-1 (w.) KW O1T A-T (w.) (E-51)

where Kw is the covariance matrix of w and

N
(flij 6(ji-kI + 1 - J)Pk (E-52)

k-l

The basic dependencies may be observed by examining the above.

The covariance of the estimation error is determined by the actual window
function as embodied by A-l(wo), the measured source distribution as embodied
by 0, and the error in w as -embodied by Kw. Equations E-51 and E-52 may be
evaluated for any assumed set of coudition-s.

5. NUMERILAL EVALUATION STUDY

The equations developed in the previous four sections of this Appendix
were evaluated for four cases closely related to the experimental conditions
encountered with the 18-inch elliptical mirror. Measured window function
data was used in the analysis and the variance of this was estimated by
fitting a cubic polynomial through the data dnd using the variance of the
resulting regression. Details of the test cases are given in Figure E-3.

11te source distribution assumed in all cases was a point source of uait
magnitude at the center of the source distribution line.. Other source
distributions can be derived from this case by application of th .seupe-

position theorem of acoustics.

The output of this numerical study was an estiAte of the errot in the
moaurewent values after window function removal due to:

J* I rror in the deteraination of the true window function of the
mirror.

A . Statistical error due to the fact the source is radie.

ii Thus this result indizates an upper limit on the airror's perfotmsmc. sntce
such error sources as:

e Alignment and positioning error* In mirror placement

0 %ackground and measurement noise

. ./



Number of Source and Measurement Points: 80

Band Width = 1i3-Octave Centered about Frequency Shown in
Table E-2

Integration Time Used in Data Reduction Process: 0.12S sec

Measurement Spacing - As Shown in Table E-2

Source Distribution - P<vint .Source of Unit Magnitude at Source
Location Number 40:

•j I

Source Line

"O.
Measur~ue~ot Line

Figure E-3. ktxils of TUst Cases Used iUt NMwricu
Analysis.
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0 Variation of mirror response with frequei.-y within the bandwidth
of the analysis filtErs

* Numerical "noise" errors in the data reduction process due to ill

conditioning, ctc.

are not included in this numerical evaluation.

In reducing this data, it was noted that the errors for the 80 source
estimate points could be divided into two groups: the error at the source
point and the errors at the other points where there was no source. The
error at the source point represents the accuracy of determining the value
of a strong source. The non-source point errors (which were all nearly the
same magnitude) indicate the value of the "noise floor" of the measurement,
and are thus a measure of the dynamic :•nge of the procedure. Attempting to
determine the strength of two sources whose magnitudes in dB differ by more
than this noise floor value will result in the smaller of the two not being
detected. The values obtained for the test cases are shown in Table E-2.

6. CONCLUSIONS

The followirg conclusions may be drdwn from this study:

1. A smali ellipsoidal mirror such as the 18" mirror developed for
this program is cýpable of obtaining useful data when:

a. The- source fiequency is greater than 1000 Rz.

b. The source dynamic range is less than 25 dB

c. The source spacing is greater than 0.5 inch

d. The measurament accuracy required is less tight than 12.5 dB.

2. The window function removal procuoure is ver sensitive to an
error. Especially those in:

a. The assumed shape of the window function. This Includee
measurement uncertainty in its determiiation, the mechanical
repeatability of the mirror manipulation mechanism, and
mathematical modeling errors.

b. The numerical proceure used to solve the estimation equation
and the word length specified in the analysis.

c. Background and instrument nolse*

3. The presence of errors in analyzed data mty be difficult to detect
due to high correlation between adjacent orrors. Check procedures.
like those suggested in this report, should be included in the
data procedure te guarantee tne quality of the data.
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APPENDIX F

1.0 DATA REDUCTION PROCEDURES

DETAILED DATA REDUCTION PROCEDURES

A detailed description of the data reduction procedure is given in the
following sections. All the constants and equations in this appendix are
given in English units as actually used in the data reduction programs.

FLOW RATES

The mass flow through the outer nozzle was measured with a 1.248-in.
throat diameter choked venturi meter, located as shown in Figure 4-2, Section
4.2. The flow rate was calculated using the equation

N~O PTVQ AVo
W - CDVo A (F-l)

The critical flow factor, KVo, was calculated as a function of total pressure
and temperature:

KVo 0,52824-1 TTVo +b TTVo 2+c TTVW 3+(1.86 x 10"5) P'Voe (F-2)
-0.0067 (TTV 0 -500.00)

where

a - 1.654 x 10

b - -2.119 x 108
-12

c - 6.008 x 10

where TTVo and PTV are in * R and psia, respectively.
0

This 1 .qu.tLiot% was ubtuntntd by curve-fiLtiii talbulated valles L1. Referenco 36.

The meter flow coefficient was calculated as a function of the throat
Ra~no-as number using the following semiempirical relation:

CoVo - 0. 983 ( -. 0691 N 183) (F-3)
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The 0.9983 factor in the equation is to account for the effects of sonic
line distortion.

The meter total pressure, PTVo, was determined by measuring the static
pressure, PVo, upstream of the venturi throat and calculating the total pres-
sure as:

PTVo PVo/0.995 (F-4)

The 0.9995 factor is the static-to-total pressure ratio for that Mach
number based on the ratio of the area at the measurement plane to the meter
throat area. The static pressure was measured by six taps, and each was
sampled four times with dummy scanning valves during the taking of each data
point. These 24 readings were averaged to determine the static pressure.

The meter total temperature, TTVO, was determined using five platinum
resistance thermometers located upstream of the venturi. Each thermometer was
read twice and the readings averaged.

The mass flow through the inner nozzle was measured with either of two
choked venturi meters located as shown on Figure 4-2, Section 4.2. The flow
for high inner flow rates was measured using the 1.1398-in.-throat-diameter
venturi. The flow for the low inner flow rate testing was measured with the
0.3985-in.-throat-diameter venturi. For both meters, the flow rate was
calculated using the equation

Kvi PVi (F-5)
60.00 iTv-Vi

This equation is based on calibration of the meters made by the manu-
facturer. The Kvj factors based from the calibration were

Kvi - (-1.9153 x 10-7) PVi2 + (1.10896 x 10-3) PVi + 32.29807 (F-6)

for hil 1.1398-in.-diuiaeter meter, and

Kvi - (-3.02076 x 108) Pvi 2 + (9.49693 x 10-) PVi + 3.93951 F-7)

for the (.3985-in.-diameter meter.

The meter static pressure (PVi) was measured upstream of the venturi
throat with four static taps, each was read twice, and the eight numbers
averaged. The venturi total temperatures were measured with three thermo-
couples (each read twice) located upstream of the meter.
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FLOW COEFFICIENTS

The flow coefficient of a nozzle is defined as the ratio of actual mass
flow rate through the nozzle to the ideal isentropi¢ flow rate at the temper-
ature and pressure of the flow.

measured WCD ideal W (F-8)

The ideal weight flow for the outer nozzle flow was calculated from the
relation

K A PT0  A*
WI 0 = TT0 0 A-

Ao is the outer nozzle physical throat area and

K = 0.5282+a TTo +b TTo 2+c TTo 3+(1.86 x 10-5)PToe-O'0067(TTo-500.00)

where a, b, and c are as given in the previous section, and TTo and PTO are
in * R and psia, respectively.

The nozzle temperature, TTo, and pressure, PTo, were measured upstream of
the nozzle throat with multielement rakes. These rakes were placed downstream
of choke plates and screens which provided a flow with no pressure profile
distortion at the rakes to assure an accurate pressure measurement. The
outer nozzle rakes contained eight total pressure probes, the readings of
which were averaged to arrive at PTO, and two thermocouples, the readings of
which were averaged. The inner nozzle rakes contained five Pitot tubes and
one thermocouple.

For values of nozzle pressure ratio greater than 1.8929, A*/Ao in the
ideal weight flow equation is equal to one. For lower pressure ratios, A*/AO
was calculated from the isentropic relationships

*216 M 1 +A /A (P-O)

where
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I 0,o °.28571 i.2852

The inner nozzle ideal weight flow was calculated in identical fashion as
the outer nozzle, but using the inner nozzle throat area, flow pressure, and
temperature. For the low inner flow testing, the inner nozzle total pressures
required to supply the low flow rates were generally lower than ambient pres-
sure due to the pumping effect of the outer flow. In these cases, the ideal
flow rate and flow coefficients are meaningless and were not calculated.

THRUST MEASUREMENTS

The thrust of the exhaust nozzles is defined as the axial exit momentum
of the exhaust flow, plus the excess of exit pressure over ambient pressure
times the exit area normal to the axis, minus the axial drag on the nozzle
external surface; i.e.,

F - f d (WV)axial + f (P-Pa)dA- D (P-1)

J.exit Aexit

The external drag consists of both the pressure drag on the boattail
surface and the axial component of skin friction. Figure F-lI shows a control
volume applied to the test nozzles. Writing the momentum equation in the
axial direction for this control volume demonstrates how the thrust was
measured for the tests:

F FLc+FAS+A1 (Pf-Pa)+A2 (P2-P )+A (P3 -Pa)+A4 (PP (P-12)

where FLC is the axial force applied to the load cell and PAS is the axial
force applied at the boundary of the control volume by the air supply tubes.
The static pressures P1, P2 , P3, and P4 were measured with two static taps
1800 apart at each of the four areas (see Figure 4-11, Section 4.4.3). The
force measuring system was calibrated by applying known forces and correlating
this force against the load cell output, as previously described in Section 3.0
This calibration provided a linear relationship between the applied load and
the load cell output in millivolts which was used to determine the load cell
plus air supply tube force as follows:

Applied Load u a(mv)+b FLC + FAS(-13)

where a and b are constants determined by the calibrations and mv is the load
cell reading in millivolts. The load cell was sampled 48 times during the
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taking of each point, the above calculation made for each samplk, and the
results averaged to yield the measured force.

An adjustment was made to the measured thrust to accounc for external
friction drag on the cylindrical section upstreao of the nozzle shroud. The
axial force on this 8.0-in.-diameter section, which extended from the metdic-
break to the attach-point of the nozzle-shrouds, was not included in the
nozzle net thrust. The friction drag was calculated by the equation:

"" Df- PM A Cf (F-14)
f 2 a a cf

where Ac is the wetted surface area of the cylin4rical piece 8.0 in. in diam-
eter and 7.0 in. in length. The drag coefficient was calculated from

2)-0.5 -2o45 (F-2.4

CfO0. 2 8 8 (l+ 2 a (lo 1 0 RN) (F-15)

where RNx - 9.37 RNa; RNa being the Reynolds number per foot based on the
ambient stream Mach number, temperature, and pressure.

The thrust of the nozzles for this test was therefore given by:

F = FLC+FAS+A 1(P-Pa)+A2 (P 2 -Pa)+A3 (P 3 -P a)+A4 (P4-Pa)+Df (F-16)

or, substituting the equations by which FLC + FAg and Df were calculated:

F a(mv)+b+A (P -Pa)+A2 (P2-Pa)+A3 (P3-Pa)+A4 (P4-Pa)+ X P M A C

THRUST COEFFICIENT

The thrust coefficient is the ratio of the measured nozzle thrust to the
ideal thrust of the inner duct flow plus the ideal thrust of the outer duct
flow. The ideal thrust for each stream equals the actual mass flow rate times
the ideal velocity; i.e., the velocity of the stream expanded isentropically
from the total pressure to the ambient pressure. The equation for the thrust
coefficient is thus,

F
T 0 0o o+ Wi VIi

The ideal thrust for the nozzles was calculated using the dimensionless

ideal-thrust function which is a function of only the nozzle pressure ratio.
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yl 1/2

P IF ,y -ý_I (P a/PT)

(F-18)T!

1.81163 1- (Pa/PT) 0 . 2 85 71 for y 1.4

The ideal thrust for the inner and outer streams was then:

W A1 \(i 1Wi VIi = CDi PTi * A1  A WIi VTi)" \%1 P~i'"• 1(F-19)

WI 0V 0\
WVIO =CDO PT A (o* PT.A*

For pressure ratios greater than 1.8929, A*/A - 1.0. For pressure ratios
less than this, A*/A was calculated as described in the previous section on
flow coefficients.

During much of the low inner flow rate testing, the total pressure of the
inner nozzle flow was lower than ambient. In these cases, the ideal thrust of
the inner nozzle was set equal to zero.

For the static thrust tests of the STA model, a dimensionless stream-
thrust parameter was also calculated as:

F + PaA9
f a9 (F-20)
9 PT1 A9

where A9 is the STA nozzle exit area.

PRESSURE DATA

Total pressures in the models and static pressures on the model surfaces
were measured with scanning value/transducer arrangements. The individual
static pressure readings were also nondimensionalized by the ambient pressure.
Pressure forces on the aft-facing portions of the shroud, outer plug, inner
plug, and suppressor bases were calculated by multiplying the difference
between the static pressure at each tap and ambient pressure by an incremental
projected area represented by the particular tap and summing the products,
i~e.,

F + £ (P-Pa)M (1-21)
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These pressure forces were also nondlmenslonallzed by the total Id•eal thrust
of the nozzle:

Fp

Wi VIi + Wo VIo

1

i i

Geometric details of the annular• suppressed models ere presented in
Ftgures'•l through F-15.
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See Chute Detail 
Imer-pIu•

in FLju P-2 •2.406 -- Geometry

Coodluate, Coorinate,
l/-d..oo Id

Stw ~sht 0.300 0.240
Utna 0.579 0.165

1$9 4 ý0.S44 0.164
0.623 0.151

0 4 r 0.66 2 0.114

0.6U2 0.130

2.620 diaM~t~r 3.844 diuater 0.701 0.121

-- __ _ -0.721 0.110
0.740 0.09S

0.7S9 0.075

0.779 0.040

0.746 0

SSIICln Plnontion• CI•

Figure P-3. Geometric Details of Configuration SC-3, Modified Baseline PIUS.
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x .40ml30

Smn10M 14i.I0.30 CO~~~"0.3

0.. 17$ .34
000,170 .342

1.30 032

0.1"0 0.3

l 0.160 0.112

5 .2 d ~ m o r4 , 6 i - I O 0 . 1 %0 0 . 13 10

0 46 0.20Z

.00 0.330

I.-- ch,*D441

1. .iw* 4 600

F igure P-4. Geometric Details ot Coafiglkratioh SC."t, N a so, Full Plug.
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COGWNIAM* C40.70440.

t 0.3.4t 0444
0.138 0.45
0.4383 0.131

:143Z 
0. 130

25at~tr .0 4*w~t0.411 0.IZI
0.40) 0.410
0.5)0 Cý00:1
0321 0.07$

0.1,40 .*,04

C40100)W 09

Pigure F-S Geoa ir Details of Configuration SC-S. N~ $ 0, Porvard fasolitte Plug.
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Sce Chut. DOWil

I-

Cooodlooat. Cordin..t.

"" Strulht - 0.170 0.298

Lint - 0.044 0.35

- 0.039 0.354

"•.ZS di-t 4.76 dite* 0.029 0.357
- 0.020 0.358
1 0.010 0.3S9

0 0.360

0.010 0. .30

0.020 0.357

0.029 0.3S3
0.031 0.334

StraIsht 0.284 0.254

0.719 0.163

0.714 0.164

S0.763 0,1$1

O.202 0,138

O0 22 0.130

gls of Conft gut•oaio DC-2| A5 361 0.lg0
01220 0,095
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See Chute Detail 
X

in Figure F-9 InrPu

rmeow-plug
•.S23 •Geomstry

d --------- Coordinate, Coordinate,

I da 8.0X/da 
RI/d.

0.440 0.240

0.719 0.16$

0.724 0.164

0.763 0.151
0.802 0.138

04radi0.822 0.130

3.844 diameter 0.841 0.121

2.620 dijuetor 0.861 0.110

0,080 0.09S
0.99 0107S

0.910 0.040

0.926 0

Sam* as Configuration DC-3

Figure F-10. Geometric Details of Configuration DC-4, AR = 2.0, Modified

Baseline Plug.
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Inner-Plug

X Geometry

See Chite Detail Axial RadilI
Coordinates, Coordinates,in~2 Fi u e F2 s68 Va yl d,

- 0.139 0.29$S•- 0.056 0.332

0.75- 0.0r6 0.329

d. 8.00 0.039 0.335
- 0.029 0.337

-0.020 0.338
5.2S diamter- 0.010 0.3,9

4.76 diameter 0 0.340

0.010 0.339
0.020 0.337

__0.02S 0.326

0.286 0.282
0.719 0.165
0.724 0.164

0.763 0.151

0.302 0.138
0.822 0.130

0.841 0.121

0.861 0.110

0.880 0.095

"0.899 0.07S

0.919 0,040

Same as Conftsuration i-S 0.926 0

Figure F-1I. Geometric Details of Configuration DC-S, AR - 2.0, Full Plug;
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See Chute Detailin Figure F-9 -S.S68 -S• Inner-Plug

Geometry'

Axial Radial
Coordinate, Coordinate,

d.iXda Rj/d,

"0.321 0.210

0.489 0.165

-.).494 0.164
0S radius 0..133 0.1$

3. 66 0.572 0.138

- -1.25 di T2.60 d e0.S92 0.130
S0.611 0.121

0.031 0.110

0.610 0.091
0. 25 0.609 0,075

0 3.689 0.040

0.0.6 0

Sam us Confiu•atioh DC-$

•'.I

Figure F-12. Geom.tric Details uf Configuration DC-6, AR * 2.0, Forward Plug,
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P-1lJInur4'lqs2, S68 ----w Go.,str-

-Caordinate. Coodlinat,

"T"ý ~ 2I.14. 81I4
o traiht 0.137 0.298

.Li 0 .. 030 0.318

0.020 0.319

0.010 0.320
S. 25 diseoter 4. 76 dtawtar Ttalt 0 O

Str.i,t 0.286 0,2283

0.719 0.165

0.724 0.164
"0.76 0. 161

0.803 0,135

0.822 0.130
0.841 0.121

0.861 0.110

O.88O 0.095

0.81" 0.07S

0.919 0.040

0.o26 0

""- Sali as confltwati•o DC.?

Figure F-14. Geometric Details of-Configuration DC-8, AR a 2.5S$ Full Plug.
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INSTRUMENTATION LOCATION

Details of static pressure tap locations for all models tested are
included in Figures F-16 through F-21.
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ANNULAR SUPPRESSED-NOZZLE THRUST COEFFICIENTS

Annular suppressed-nozzle thrust coefficients are presented as a function
-of pressure ratio in Figures F-22 through F-36.

683

T_,

7'



/ o o o N o o

i.4)

4;C

r-4

0 .,2

14 1 4

V4

fta

.1! 0!

0 0 0 00I

• I• .. I,

ICI

, .. .4) . ,. " , , . . .'

.' ' . " " . . ,- .tow



I _____ -• N

I0 00

"u 144

I7 Q

0) 4)4 6
i 000

a 4 -C;2..

i)4)

).4
4).0

S .. . ., ...+.+ .+ +,.,, +. ,+ ,, ,,._ • + . , . , r .... + . ... , . . . +++. " ,0 . t 4. 4
,! :<,-_,____,._____,,__Y._____,,_"___.__•; ' 75-". .•, .... .. ._--__._..,_____.__ _____,.__-___-___.,___-. *s0'- ")



]/.

-- - -- _• ... •0

r 0 40

e -

-...

C4)

m cc 4)c C 0 l0

Sk4).", 4, " 4 ,.)) k...•

•.,..

00 44

4)0 44 4

0 II C4

- II 0

WeS

o 4) *,' a) N 4 0)



0
-- 

N

0.4

w t!

01

4.1

t o 14 o 1

I.I

- 4

SIN

. . . .. .......

6876

I

•'•+"3 
*|•l+JJ• lm • io~t II~sqo!;S

'•.,.

?SB

" Ii , . , +04.1'+• 

. . .
.

-



C.,

I - o

0 Io

u. I

- I:

Sz - -• •

.288
?z

}, . •S.,



o ao

OD0 N 40

=0 0

4J

0q

'0~ý N 00 A '0N.0
60 0 00000 < 00 do00 00 0 0

o a 0 0 0 0 0o

______~~~~~s __ __ __ _ __ _ _ _ __ _ _ _ _ _ _

C 4;

lu~j~jjj*0 0tt eootO

6"0



[A)

.04

3. 

In-

u. .4

- 4II 
)4

,~ 444) I )IL"

0% '7Ujjj4, l0u. f l)410

I 00



0.

0

o U

II 0.

z.... -



"" !

U;•. I. , 0

U .

- -. w..- -.---.
0£ 0 -

0 00 0.•. .0:< ',%,.'-t. ,• , •,..: . :• ", 7,.• '-.,L T+.•. . .. ,-



I ______1-

"4 I

I 
-I

.,. .

.- ,i 
.

I...

4,+ + + N +44.. ... ...... .. ....... ... ... ... ....++++
•"••,:.l •''•• -"•" + ';' '•• s•'i•.4 + X - + + " "+ ¢ '+ '' .+ ,,,,+• - j , " .+ ,.+. .... . +. , +. .



1� '4

4).0

0

4)
4)

o I..
4).

N 4)
'4

0z
I-.
4)

0

N N 0
0) N N N 4)
* U

o a a a 0

'4 4-4
4)-

4)

0

4)

0
'0 '4
N '4

4)
o 4.

II 4).
-N4) 5.4

'4

o
4.4

0I___
N N 0 'C'
0) N N 4"

* * ('.4
0 0 0 0 0

4)."4

0.
U.---I-.. .� I

0

*4

1.44)

A I,

L I I.

's" � U

I ____ ____ I ____ - -

- a 0 0

'I.
'�U'4�)�JJ.)O) I�4UQJ �J 1 ) �ttZO*J

jv

694

lsC .�

-

�.



'I

f _ _ __
I C-

.-..C

0.

0

0
a C

Ii 4. U. J� 0

5.. � 5.. .
0 00
U U
U U II l's 0

0 N
A N lx NS 0

z
I.
0

"4 0 '0 �4 '0 0 '0

CC CU '0 CU 5'- UC '0 04 '0

o o 0 0 0 0 0 0 0 0

ii 1 -5 w 0.0

0. 0.
.2
-

8A 41
LI. 0

0 I.
00 44
U 5.
C � C.

�4Z"A 45

= S * N

"1 .5 *4

.5 .
0' 0 0 0 0 0 0 0 0

U.

S U.�*.*i -

U.

'*5

E
- 1'1�

t
* A

0 - 0 8. 0

695

.5

'5



*1
C.
N.

0

C-

0o -

I...? 0
0
Co U. �

�II S.
00

0 C
C IS

C N 0

.5 I 0
0z

N cC cC cC cC 4)�1 __ __ N -� I-
0 0 0 0

0
N

N. 4)

0.0I-
C.
o

RI
- __ - -�__ __I

0
U. 0A LI. C

4.)
0.

�I2-. --.------ NO

II 0

U.

0
0.

'1

0. *94
___ - - C

'I
�

ooc,.�2oM - 1 0.
0

0 -. 0 0

IOUILL �0iMb �t0a4�

-ot

098

6 4. 4,



s4

0 0

• o Q o 
-4

4)U

4) -

(0

•. 
(o

"44

0 

04.. 
C



1 [ 1

SI -.

l I.i

.4 II (Cli i,•' I

- - - N Nili l i ltlil

(tC

CC



OFF-LINE DATA SUMMARY

This section includes a data summary for each point taken in the test
program. Listed below are the parmamters presented in the sumfnry.

Page 1 of data summary

D2 Inner nozzle venturi diameter, in.

MA Tunnel Mach number

PTO/PA Outer nozzle throat total-to-ambient pressure ratio

PTI/PA Inner nozzle throat total-to-ambient pressure ratio

OMEGAT Inner to outer nozzle flow ratio, Wi/W 0

CDO Outer nozzle flow coefficient

CDI Inner nozzle flow coefficient

CFNET1 Nozzle thrust coefficient based on sum of ideal thrusts of inner
and outer streams, (FD/Fo+ Fli)

CFNET2 Nozzle thrust coefficient based on outer stream ideal thrust,
(F-D)/F 1 o)

F9 Nozzle exit stream thrust parameter

Page 2 of data summary

DCS Integrated suppressor base pressure drag divided by the sum of
the ideal thrusts of the inner and outer streams, D chI(Io + Fl)

CDS Suppressor base pressure drag coefficient referenced to free stream
dynamic pressure and the model cross section area, D ch/q aAmax

DCSH Integrated shroud axial boattail pressure drag referenced to'the
sum of the ideal thrusts of the inner and outer streams,
ODh/(Flo + F11)

CDSH Integrated shroud axial boattail pressure drag coefficient referenced
to free stream dynamic pressure and the model cross section am,
A h/a max

DC-PL,O Integrated outer plug axial pressure force referenced to the sum
of the inner and outer nosele ideal thrust, DpLo/(Fo + Fit)

DCPLI, Integrated inner plug axial pressure force referenced to the sum
of inner and outer nozzle ideal thrust, DpLi/(FPo + F1i)

OCTOT Summation of nozzle integrated axial pressure forces referenced to
the sum of inner and outer nozzle ideal thrust, iSC + DCSU + DCPLO
+ DCPL.1

PSUP/PA Area averaj d suppressor base pressure referenced to tunnel ambient
pressure. P a
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709

S._ • . . . . .. 2 _u " ._ J -' _2 •2 & _; _ • _. _ _: . . ... ... __ • . ... .. . .. .. .. _'_. ... " .. . - _ . • 2 2 2"-:- • -: 2 z........° ...,



n o

.. ,
1 

. ,, ,,. I- • - , ~ CP cc N, - P ,'• N,-,0,-" . r. a ' C. , - it a • , . o"0

'o 0I, c, 0 a, * C. S.. t' 'c c 0 % *NI ' . a r r....at'-NE.0.CON.&

o+° oo°°°+°o,.oo o °°°00 oo'o i •°+°°oor'!o°°'o°°° r°'om+ 
' I• 'P O li t -,.I -} -FI - " ¢ "

.-- 0' C.000,1cee '.000 0 P-.e': ..t~t''a'.tOt:0 NCo+'' .O 0'..afl'I

........ CO •gt+, m++c 0,Q'0C. 0, 00 0 0•, O0 0 OC 0I' 0~ 000I0 00

ci I

, 0 +j I I I o oI ° °°O o+~ ' °

i'I ,.. IW .0 C' ; w% 4 v-1- I., w V, , . vt.I " , 4 %I ,Pf.O
3 iul 4 Cc 141:1c in ' # %' i t-t: w,

C. a C.: C 0CCcý 0, C( 0-9,0Ia,

%D '1
a.. cc 1 - .v ; I-tI 0c. 7 t , a

w ,o c-', a "d o ý .- c, olI.- *. Q2c ý 1 . + cý 'ýo ' o c-

11> v,!, ,t,, U`L.o D

4 
044 

V,.. r-t ' o''Dq
'iz 1 I0,~ 4. O..44 '-.jCC ' . -. ,r. ''o;,r nI

v o~0 C..~Cj c.1 '; ý

c. ejiu. I 1. ' G

L; C

N IN
: c. I no ; ,,-c.. '.1. .. 1 in O! . 4 , invI. *. Ic * ** 0 7 c ' I.I

I - 0009c Q 0 C 'c : ý 000l '0 T 0o c 0 IC C e.CIo, orJOOOCOC, Lv0oe)c oi

-oiWrGa ,Cc0 CCCC CO •00

'00 O00..........* . . . . . '"

c- '4 0 1 I M ID 'G U, 0 -a

0 -,•, h € 1-- ," : -0 . '0 "

a'-,t I is. '.*' -'isa 4,a
C4' ','. ' "n' N ' O t' 0 "tP '04 'DCC

"0: 00CVLC0+

a' 4 Ur 1^.4 41 PC , 1*, I f l y r - . lolw

I . - , - It I I I Is It I. I C

- ~ ~ ~ ~ ~ ~ ~ ~ ~ N N0N.4.ii' Nmfi mN NiNNS' o" Nfl 1,11'a~s3'0

I4 . .1

710

'o ... . o: 0 ca): . 0 ' a c 0 or i--n _in ....... 6-............ .... ....... 1.



7 3 701-00 .1,C 0 0, a 0NN~ .q r .a-O
I-0 O o ;CcOccOc OOC aCCCCOC C ..-CCI 0.7 io C CC C 0 C'C

C. '0 t. 1, 4"'1 a,-Q V.

O-. N m ON :N (14N

Ix .0 . 00 1w C!, 00 0'0 W -. 0,.0 CI 0C C.0 0 0 00CC 0C O0 1-, NI V,.C MIi. vI
cc~ oOco c~c cce~ ~ o o oCCc.C o.O OC Octcio No.,e 00:0

OC 01 O 0 CC0 Oc010 0 -0 C.c00 0, 00; 0C In O00

I .COc_ C'i
0. 1C *. ' . .4. . . . .I; V t . ,i. i...... ......lot

:) 0000.~c0 0rc, OC0'IO

* 1.4 U.

IIIII I IIaIK 11 i IIIIIIIII
IW t-t .1 -M N COt it -C,.:

- ItIP- N 'tC-r N'tO.O0t. P0 00

cc4 0 1 II 4I - o,.tmO

ElcU I -1 -t~ -I I .n6

c J -1CO 001- 0 C_ "'J " cL C' i Ic.J C 0 C IO 00 0t00 0 0ICOCCnOocO CO` 0 0'0C 00I'0oVI 0 Ino

r, c i ' gc'c n~ C0 C.-C. 0 aC. ;OmC' n~ 0 c 0Cc0
cFCli FIFý r FI c1'FI 9FI9.... . . .- . . -.

C IFFI F~~N I~ I, I

-(11 Q. 000 V, 4 0 0-CN0

UCC C O - 8 C -coCC3' cl OL C C C~,-1 CQ'

I I I.i, It I I I I I I INI N N NI I I I I I I IIIII

CI ~ c I~vte cNNN cN0!.U.~~e Ca "4 t. P)

Q:Nr4-, I V 7m111

IUcC cVro ;481;e8a



I 1 rJ

LL . -qjdp

IF c

I- C.: 0. I? ~ 0 . t. m ?1 0.I 0 4 r. C-].Wt 1~U 00~P 0 0 0. G

Or. 0,wC.

U I . I * *~ ~ ~ ~ ~~~I . It It.. . It . .I. . .: It ~ aa l l ,
.L 00 Cc--Oc C08 00 00 0 0 Q 0 CI 0 NC- - - - - -

;C L "

no 0. 0C 0,C~0. ;p0,0 OC 0CC0 r C 0C. c. c. 17

'0'G0 tao O W Af

0. ~~ ~ ~ ; It Itr ...Nf..NN.I . .N .INNItNNItNNItNN It It

ZL712



,~ C P.- 'Iý V. - _~ , W~N AI P O 0 wGO .. "._ efft--' ~ @
,-O.NPN - PN. 1 I' I-;4i -4b tf o ,oC00-P - iýi,

0 0C C eOLC, C e 4 , 8.;1 Zo 8 ,CC C, 1 COc; ;cO 00

'L tA- , , V-ifUitW, 't .iro NWe.tg.0wNeV twW,'U #V% a

COO C 0 , W, .. . . . *C . .- . .In. c C

LLIL
c~~--.f~ CCCOCCCOC OCOOOCC C.0~ C0 Oo~C~C c', C 0 C

OS In Q! P. wt.a I ' MflV - 2

irCC, 00 ivoinc n c COO
r II

~I 0 0r 0. -c o,- C, ,_ ',-

*: C, 0 . .. . . . .~ . , .. . .Si . . .. 55,. Q , , C~ tC0c~o 000 oc c a- .. C' ci CIO ep -0 n CO c)0

.c~~~~~~~ cc~ CIO'c C-e0~s0~~
w .c: ZOO -- * 1? .: 0:~. 2 * ~ * ~ .** *4 SSS . 0 CS Q .. P-4

S ~ ~ ~ of r4 I r..f N r-N N N~4

.I- .. . .. . ..

u000 c .OC 0 0 0 0C a 0 0§C,.OCIA 00 c.0CC.CCC

I. I- C!' r W% r. ma-
I ~ I

* ~ ~ ~ 'D0 N M ci.r I,, Sý IV CP *S &' 5 ~ 5 S S S S * 5
(8 0t w UOUCcCNCIVCO16000. q SS

000 I00 0. 11.o 0co. .,ea ooI 00 0 oC

Q - I v C - -c Q -- fi-i - 1- 30 v
acA vv tN~ ~ N N N NN r J P N N N QN itIN N NIN% Noo

C a a4,v v 1:(15 9cv 0k0 aKI-P13 hP



r-OC aO C' C O c C C0 INNNC'..It.NCr..-I V In Ir vc 0I '.F
u w 0. L '

1I ooj:Or QC a0CC
0,. 0C Iý c :. -i t-a.cC i týC C

' . (P I, 90 I r-~~'' Q~L. , C I N ~ t V ~~ *d'~t.,

*5* 4 *,, *440.11 . . .1* m *

.-. 4A a-. D a0 C -c- -- v CN . 4 ~ ,

Ar 00NINJ440v 3 44 40 Q0CvU; C;4;4 8jI

Nli t u 1 4.g.4: f, .1 C N 1 % f- N'O

a C: 4c* 4! Z. .44

0 - -. - - C' v r0~~ V 4 2 A U.4--.-

- -400 c 0 W C .j 00 0W---------- - ..

* in

Ic 0 a P.

01 ~ o In Il00 @000 1". P. o

-4o r ~ IL

471

1?K



rj. ~ ~ 4 c:. . . . . . .***

-Ift ~ ~ ~ ~ -* II fCeoc. -a

c~ ~ ~ I .,

CIO 0 C 00 CCC 0. C. 0 0 q;cO 4,; 4; C g C *.0 cC1 11i O V fit VI I I II
1 1.10 fi t cI.

-X J CO CIO 0C 0. 00, 00r0O000o~o~ o~ ~~~

.j~ .. . ....

10000onco
CCr 'I "M J, I N0

;a... 0c~~t~ O'c o.c.C cJ. o. go QZ.r oc
1Wf f N. 9 .l 9 . . . .~ . *. . C. $ .c.

CCO C, 0~ Ir i ,, 0,0 y

,fj~*o .~o u, 11 W,

C, 00 f* Iki ~ ~ -
0

CO C, V`c r-,. Ct4.
4
-.. n -i

..4 .4! ,.s. -~ C:C. .!9 % ý C

C: C
c 4, 0i0 C o!.p2 ~*

0. 1 1 1 1.1 1 1CCCCCCCUr,,rCL0 C , N C 0000 IC ,

uC 000 QQ 000c 0 0 
0

0000Q O'co C, 4144

N 1, v.) F.IN ýr

C' ~ ~ .,a. f414 c c TC,71%C.47, c



U. N IN I tI IOCfit I

IC I
kA o.c.a Q . ý ., 1 I I- C

Q 0 C ,~. 0'4 In"7w .a Ia
c c a O~4t14 u Ie C; o ncl C%0

C2 c 0 a 0 C

Icuu

W, W% ITq 'I.#P

NI ol 0. wNa

fi~~b of , 1 P N d

t4 It, IL WO ik S 490IL .,

1. IF 04

.. ~~~ ~ . .. ,. PiA#%$eq

- - - - -- -- - -

a ov0

v~ t * v4Id.~II 0 ~ 4 wjfW

~~1 0" t VP a.- - . -

7161



MODEL SC-2, 30 SHALLOW CHUTES, AR * 1.75, BASELINE PLUG

717



- -G~ -- -

. .. .. . . .. ... ... .. 4NP

0,1 49I.a0C 1r Ic ,[ Q

r 1:U X

lt 1 C-1

at'.- VI- -% 1? fl-týfv It 1 -

171jc



II

tAt

alp 1i ft? NI 0 10 Ci A, J ~ i i I I it I il I I i l 1 •- ti4 J

WV- •"wrc ,.4I~r..N.M, $'t. @.c1- ,JoJ 0! 4 , ,f.. • 'D .?It-•0--

0.• C. ; 0 1•: - t ,* 1. wf* .0 a IV' Iti' 4 V' Pl I^ b'

ý% t !! '. ,/ I i Ir. 0. p , !

1w _.r ir; !o. If e I1i No 11 'a II i I %

I r

T. * I I . I I I * I I * 1 * Ij Ic ** .I , KiI I C1  I

*-, : 0Q , (. CJn J' 0!0001,J .. L t ,.lo. ,l

'N-C4.0O.~..m 4.7 -tNa ~

4 . 0 J1c a 0 Ccc0 cC C N coC -

l ..00 c.... 1 U'1 '1 .... ... 1 "i "1 '1 . . . ..... 0 i. . ..i.... . ... " . , . , - .. ... ..• . . . I

I~ 74r 0) 0 ~O C C00.C C00z000

.1?! i " I. I' '99 9t"9.C coeL'c~t0(;0.0000o~ic~ccorcc 
C cool

t4w %m -N

,.- I ''l' I I II Ii ij IR j

"to' @t cýt 0 rr,~Q 010C a 0 n Cc% Otg1 QQ10CI . Vn 1C vOjQIalq

04 n, V 0C (
i t' i t ti . 1 ti. .t . . . .

cr 0 Q IrC(5 civ0. 0 ar C,n c kloter i cV c a cee,; ;w- Ccar. c(

I,,: 1 W11, IA! wit, je v 'aIV'.aa
* V) %t g*%I"tI 4 a C* c gI.0 &. n

v r I ;I I eI. 01 P r0

tor Cy 4':A vt v 15 '01 t .0 Pt tot' 4~ ft*..t*-0 ' It tp.n p

'!iV I.Kb4 f Cc liI V.i , 14
f, tVv, 1 1tpz tAA -

a ~ ~ ~ ' 1'. 1 $:I% $

10 SJ5 c r or coot qf4 j*0ý_4C4r j def 0*41 "Cc

V Pt>*r44r tit ' -t-; V V

44 .011 11 e( 9.0 4 1 t t4 4 f10V t0 0 :V 1 t-* * , - 1 *- w
e~f ft ftp*-r Arj -ft 04 rv 4 4 d% ft 4tft "tic

a it 444Y4 S d 4 V t

10 0 c 0 o 0 0I

719



,c I I I t C

I~~ W.:.. aIqKII.C. .NA cff rtc cutJ N j

1 i CC C 0 Q, 0. * ."X QF(.04,QJWt e .a-

-IsO o= , r9.. ccrr,, ... ,,a.e • ., .- ,,,f J C. I.C . 4' t V

. • .. . 1.. . . . ...

l t 0AP

I~~~k efr Qt ~ r8 z f .VC" t,

.o ? t i t i iI ! ! ! I I 1' t

V,. v *t 
is

9 -, -N 0 1

Cc tt

.J 2 ;II :/ I I/ i • It 16 1? / I !

A~ * .01 o~~~C :rr Vte tt
S' i .! L .711 I ' I! "I! L L '

42S

. , • I, tIll + I t h • i t ,'. . . * * S.<" r• . I l • ,l * # • . % b, I Ž 4I .... ,. I

-~ ~ ~ ~ ~ p ti. nt %*0,lý~kttts~. *Nt4 e.t j
w "&§ • '• :" " "i i/ l it L ; l I ' , I I 1 [ !" I .. j.a ~ ..

i i i t iltt 't l' l Di 'ii•C'* a%'i't''i/'t ''CwuO'§l' i~ il~ °

)s .4 *1 /ft ,••h
1% I; ', t- ',

c tt.4 SI n-i t~tW~ t z t lttIIv
I I, i .,

$rl I 7-i TTT#TI
i T • it - ir½ 4.4 tt ! i t C4 9*S i / i tt**I * Wttl t fIt jtI I 2



;c S dL C.0ac v 'otcccovoco'ccccoccz'ccvoocozcO1 s

a 0 (1 NCO c C, a 6..oo o . 1 c 0ci C~N.1C.0r aiýc cN CN N NCNc

41aIIs jC ilIIIoi . il CeItC .t bitrc s tcICtc Icc I&' I a Ctc1P ft

b c acc4oCO OO O cCC I- O,' oCC C .C1)O C A

CIO i. .. _' , o - o o0 ITccUVrcc
17 41. INi i~s~

oc-.v In'

k-." c.. fit '3 V ~ ~ pn. K'iCJ or 1  
nt'r f 

e? I, f)

~c.OO~Q',O~jWt~1:L .. .' .. Wong no
Ut$t i- Il ii l i i i I

I, .~vt 41A k- f4.c0C -ýw ýtkt.-t' &I

c ct'' T %ý
v. C~z %AtuA4JN

c I 'Vll jj- :r'-_-

?u~ ~ ~ ~ q. v. . 4-s.I

Lo, pr k* wt -ý' #, r~ V. t

*I 111

5 i fr V 1 4. v&t rkt.v- . sr As

;II¾I ' V tf 5 swNji4 A I A$ It~l t. Jt AA % c 1 a :-Ld1 f,0 2

v stfen, ' c-a

tO4 tilki' p5 It ftl' a~qo It :r

j 721



C " j W PC *I W. . - • : r ' . . . . .
u. .~i ui c O.' e W ." t• 'ri t V ' i -C ' 4, I i I P .0 .-. ' t W, 0 UP a C. a ' C o

UN Vi° f V° • It °f^ °i°l a 41° °° °1 -L ° N T °°i °!° IVrT °T° °°
o. .. C. C-QtO .. . .a

14 o.. .. . ze0'.. . .. 4 v , ..

C. o 4 v v c Lo Ir J ! I c I I t

I
- .- ,.Oc C 1  ,C C. !!.C C O

elwp 4 a C*-'3 c V ,c r q C .IA C, .v% C c 'i T . a q 0' o

a- C j ( aIrli ip.

le 4.U'l.' •.. 'jh.. .,. i Iiil !.l *' .'i . i1 1!i,

4r ! o.q.;

1] 4241~b I44.41 . 0N.N,

1''.t- Ar.-1 f., -r f1 a N. - t.

p r o v cl. t ul g
k Y. I. k) 0 t , w u

I~ "f

I e 5

*. A% N f4 W, N O



0 :L:; QC 0 VcO, i0' 0 i 01 I:0 0o O C C0 00 .0 0 c, G
1- ~ ,0 0 M!- ~ co;. j cc voý ,V4 .0 41M ft. ac ao W

~'~ j ~ 0~~c0C¶ 
00 . %-0 08  C r-j 10.~ 0.1I C' 0 1c.

C ( 4N0C-C0, . i ; r'c Oc . 0.0C In QCOi NaC oc 1--cocVo~. *no. C.oI m .I %9c I*. .
%J10 0 1.'00 f0;C0 c CIO do ej o oO C;a 0 ,0010000,3 1 0~.C . 0 C 00~ I C I.~~Ncr -I~ I o ,O .4C ~iA l ! 0 1 11 ~ 11 1 p 11J 1111~C

a. L_ 0I c L c I Q ~ 0 ~

v . .9

0 o o~ iir 40P I, %C. sp%ft '] ICCI~0C 0 Or Ftc' a .f"Vc- ,
to .'r q ey , w. , I * ,

'7 ra4 0. #A 1,_ fk ft ft- I

000 dli Il VI H;91, 1 a
IL1 crno CtN

LA k k
4e z8( 1; QwC ý4 w A

I *I U 1111

MC C'723

.. . . .. . . .. . . . .. . . .. . .. .. . . ...7.



(4.

I II,-ti l

C. 0 CrC_ O a CU 0 w 0 0 a0

0=4 0 C , f~ .- 4 : ,r V,.

-: 1 1 1 1 1UV j

~~.b. ~ C .c c r C1 ~C! C) C cJ

•,IC . . . .. . . . 11
* 1.-.. . *2 * • * t*j 9.

ry -00* *E" l. * • * lI I Il( II l O

k q?, ( pQ, , 47 4,. L: 9 - T .0 clV"Pc*1 01 N~ W1.

Si ooo ',~~II ooa.go~oIP a 0 ~J^Qv 0 C C0 c 1

CC.CCCCC C.. ,OI: -jCCa 'i. ? ?

Cý00VIQ .Vo 9,

v:~ r*.. _

Q.4 V.."

k*i a; v 'a c - 1 0 .'.

9f 4
a1 0. 9-

F! I A-0

SIL

I U

felt? a0%

tlic F9o Sa

f. AJV . V ON

}* 4 0
1 900 A L. r

414 A .Oi2Ti zr -j~ TT
6 0tI. t 4 1 1,1a 040 1 .4 04 d 0I

724



MODEL SC-3, 30 SHALLOW CHUTES, AR = 1.7S, REDUCED AREA

725



a . 4 * **i~ i. . ...
C C

%A W .4 a0 .m . I e 4

-~ - - -C - -- -

CP46 w w

"" I ! ! Icoca co r;

CvC 'T C M cc, 4 MCC 0:

"• ~ ~~ ~ ~ 4 10 0 W, Cl (P w l ' w P- r C 7 N 0 1. - (p CI O a 0 .t • l i

c is . _ .I, 4 " C C, -

.0. n" NICo le Poo oo o. .t"oTi

U I

I; -Vi.J O,~tqC -40, Q..s OZ, . ;0 f . "N?.Io N V,-W qw C. q..V K d S P 0
44,0,8-4. 0, 0, Q a 010oOC4aCaV04 aco o13

1

10 01 a a.

v Wi q -9 - F
Ito W, !v

f.PS 4. WN.C.W~4 O W@I

ov
4  

t i 4, 4.

0,~ O4m 0 Nl s: . 4b ILI

10 4T *0 414 T", .14

j 1 li w 4 4 E 4 4 liv fof;i t .j0l .

fl~OOOOI~ -28



P. fN a. e n ~
*g0c or N 0 m gu~ w ~ N N g tPm P. N v-a v .wce . N fm -!4 -N- m M N ot rm N ~ NNNINI *43 . .3 4

UN00 0 0 0 0 0 00i

0- = 4LW *N-.40 o1 geggl-1 41 .- N V't 1AU N r
#AC -jc 0 0.0 0 00v c a 0 0, a 8 a

0 I

coocQOCo ~ OoooooooIc~ 000000 a9t . . . *I * * * 3 3 3 3

:1 
0C, 10 k ooco!ý 9 r 0

00 0 one c;ji M a 0; 0 r

1 .

N

a4 cc: v: %4 a0 Cc IOU at

%-* 90v'49aC vl -CM P. w7T ft' tl
&t 15 k v~~ v 7 1 V

of . 11' 0%'-'0



-I -

C- *c m 7-- a QC 0

N w PI. . 41 N j f1M0P , cU .c

a- a- -0 Q. I a -

C.a, .c.1 6- 40 0 C% P00- 00 0 -0000 Ncc00

Ucp j~.- aJj -y G..t 1N . 0 Q!. uN .af~0'. U, c'NcC0IV'6.
p.C 41.O 3 0N 0 -CNo N ,N j . 4,4 ~ C 'C a C ' t7 0 Z

"'ae 1 41QE , 1 c~. 1 a, e 000 0- Q

cP,0COYQ 'OCA f'. f7 t p C 4Z O M " ov0~' 0
a c aco oo F- 0 0 a0 IQC* Q~ all ucl m C'o ~Ca.' a 0 1

I4 C We ~ - wOi. p J114j

1". 0.0% A A 140 . P. o

C ~ ~ ~ 1 00 ofob N 0 10 C' Na'b',. ~ fQ .P ~ 0

'ILI aI It?1 ~ ~00i 4~40W' V

"4 4f #'~.'A 00.4 1# U 0 * 0t ' 4

3 9
.q.A Patgo~ , 00 - - cf -a

'k 4 -C v,. ~ . . *SSAAS 5L 4 *t 9 *4t4 4'.S9 S . *t *

0 S.~a NV PaP. ~...P. 1 NA #.tj'j728



I -P. WU r. P.U 4 4.U N O I- I-. P... F.
A.~~~~~~~~~~~ .4' j .~I 0'a~~~C* C~~ w~0 E

ON

c 0N I- N 0~U q aF.I- . aVI-P.t 0 f W4 cc v *&00000*ON HinNI
-I I VCCC c o oc c~cC cc 0cc s

I. * 4 . 9 . 9 . . 9 . 9.* 9 * 9 90
COL4000000 00000000 C 0000 0p V cccc 00T

04 NIN G " N £4 NO

..1cCI0.C0. C% 000Ccc oac Coc 0 00 0 0a 0 00

&IDQC C 00 cc a0I c 844

Qs~ oao if 4 N WNAW .' .vl
-. mt NO C C C%900f -Q 9-N a0 cc9 a4 f

-Q.C a a *.9 QC, a C a 0 a. cc090;'4N0C V ..

~~'0c cc0 0 * q*

OC CW. z99 a4 4 l.

I f I itA

.I owl # e1
1 -9 *V PV.~O IM w 0 to

Ow 1 .1~' 40 lw "' ct o0600
ll6 '4W 'a 9 '4'NCpg'9 VS za u v a'1r vi

4* -9 6 1.4 0 9..~ . 0 4c; . 49

IO OQ a V fro t~~.O

ft s ~ .at s V.SEE wartsC I tit s
C;9 ce J*~ C, 9i 0 90*0fu ýa

4' 1 9. 1*9 9 9 ' 4 * * ~ 4

9~ 9
0"1 ft 9.V9N9 241

9.
p9 .19 9 ý;- a- : " .

*. io 041 a0~Ok .1 1j.
9., 0, a6 f-6I

ON I- -~. o 4 to

TV ~ ~ 9 t7 V.7 1iIT



% I tItL I
a o. I- -w-,C f% w* t % C ~

. . .C : . CIL

4 .NCCCW 9P.t.. NEI. rc'.taC NCk..-.Ntr'tN.'J'O C.' S
a ý p .0NPa

aIC a ... ... ..... A..M... . .. I"

o c U .C 0 ,0900 ,*o 94 ' @4 0 U "J' I? * '.9 0 919

+ i 9. .. . .. . * . . .. '.. . ' " " .' * Ii4. * t

ko a '1 M r V It 't it p vNF, 4i

! I ~~I . I e!:, "'I ItN.O ++: l +. •+.

" I .. . . . . . . 99. I "; " i + i. ' .

Q a'Qc, C, $ ft .
W C0 0# 9~ V Cý ý ý 4 V 4N~ %gjl q.P NL-Q N.0 v v

t u.~I a dOO.000JC3 040 0-00 1 00 CC 0.0 0 0 a

Ii C'~e #04Ob~.O~ttg'0CtC00

0 q c .- ft 9 4 -A 9 9. ft9 - 0 - -9cc r;-9 9oc. 9c *99o'19 oj i t .C [ o jo t or o Q o 7 . ... .... .

u Uuu t -110wo f kza f c o. O g t, IP ,i

0002, A 04 0

I--I

f~~~-h J; 0. I 7ll 4 
% $4 rs Ia. *,&a.

W694. 409* 10bi0to#. A e &e'

4-v lee 10rr 4ftlm4fw

v_ a'~ -'a 4

4b V .- I .~ . 04C 1I 9 1*
Wt'ir ~ 4 ~ r 4t OL" 1&tr4ve arrIL A

- %j 9,, a P.~ ''130



4 dN..NOCONN TAQ A~ON A* # C 0 0'oo e c a
U' 0,ONE 000@Cp 0-,4,trO C 4 4 Cal P.N00. Wme :@CU'm'NN

44 4C ftmt,*,0A
t.l 43P v 0a -~~a

OC'OvC a'C000' 00 Cm!000000I 000000 0
n * l t *** f j ft q

i' -- t; t a,. It f"d

C #B..?ail i ~U ~ e : I it : :

K-0-4p 0 oam

ic co S. ro c a o v C.10000 0-0 0-ý4,*I4C. ;II . L i *1,
4; A a 00 a 0 VIn av 00

r* cif 2 ý116

C. ,* r - Q CC 4 q0 ;

I i 
1

V, jNf i I ,

lp r!" ~ a J Im-

4k 04 ft VU~f

01Ct U0'aut .

laa -1 11 4

-ý%10 Kw O1



fel

.. ..t 
. . ...

r, I I I I

wh

.* -A IA - s- Q

" .a C" c1 In t *'

S...Ntt-N o Ce+"r ... o i s Si U¶ N r 5't.•, IeCv ora w> -e 0 ,E
:1 i.. We I a a 0 . R I c ,. . t w- r Iec

0 t 4 r r ' 4P O "

C• iv VIC '++"+'"<' 04W+ 19""" Nw •: o
. ~ ~ ~ ~ ~ I . .. . .. . ..• .• ••'•' ••

" / ' " 1 I t 'a' "

Z 01 V.1c. g--

Wf

. ..t.. . .. .. - EE.. . W .. .. v . ..

It 11. TO .00 4

"ka 3' Zk 0 a boy ZEN

'I WW All "



I I-

of 0P.0.0P. . A
~ -~* oc~'~0 oco o ccdo a

P-G00000 C 00 c c o clc0co'Pt2

eUi 0 O1,0' 0 0o 0 099. oI0 00o0 0
Le Va a la a,

popt all Va4.JD"I . A' * c UNPaS.- .

o'00 -o 0 -9ý 0,
;it ~ 0 * TV ~ 0~egC

000C .0 a 0

10v14 ~ 2400 ~ 'CC00 0 1;O000

0OOC Ift, V, -% 10 'Wo 0.Q0 CV a 1 104

m* s a %A it itV 40* * 4f %V

i1 fo 0 91

16 .. 4 .,v , o~~~~~OL at 4 l, aa,, a ia~ r 4 a : ca a.j aaab¶? e

A ih 49 'L ".9.'a..

aa ~ Si

133 44* 4ba



MODEL SC-4, 30 SHALLOW CHUTES, AR -1..5, FULL PLUG

7.3

• ?34



U- a- m I"aa.-- . e ,Il
0! 10 .ý c .. Uý *'

C-4-1 NW'4F- 4..P O 4 1 0 f r4 NOWC4 c'.~ 0, N 0 0 m .- f- r C m S
IL ; C-4NN N c- m4 m 0 -4 fcoo .1 4c r coot c'0 ct 414N~f 0 ' ct- Pý c

w d .- N--.-* U.$ e -a c ' M .ý9;a-c 40 o 0JC ' NOC ala om %Aw4'-CC
'04- * t t~ .0 ~. ' t a004 ,- oe t

i0' 0C'i' 0"S Cal (11 cl, 0 )[a, CP aQeo 11(P. c c 0 0
0.00 -C 0Q'.C ,Q Q 0' . CC Ccc 0o.0'0 .0 0

ey -N Of N I.
44~~~. PEFNI ~ -

~~4 #,
C INNIN TIN2I" N

C-4CC Q~0 IO 00 C 000

cI.~O.~ 000 4: ri
k, IR ZO 4.p 0 ] .

Lo NQ .I4 :1.dI~ 1. W:41 1OA tf*P A :4. 4 fII i!At1

W:4P."ijjfzP0



7 m -v l ' N 4 N M P-INm .. N 01 Pý04I.f -v .WO N N N ,0 U* .N t

OnV.COCC000 000 0000oO oj
~~~~~~~~~~ ec 0 0';,*0 -C O' o N o o.oj

.40 000 0c ,0 cc Oc"OOCOOa COO1 mw 0 0 l 0q0 0OCO o OO O 0

06 0; - 4 P0. N M 4. N Nb 'S M...N4-.N-.f.

C,.4V
,0 C0CcCcc Noo O C C'.0 tV ý 90cC CO O0c

cooUN4V.O .0"0 Co 1 0'10.-N0 cc.t. c;8 ; 001 0*0.15 C, 0

k' ~ ~ ~ ~ ~ N N0~~~ N 4 .!uC"o00eOr. c400'0c 0o0O %%o q~io'nc: 00000o 'O

~~~~J c; C;, . . .~ .C' .'. .0 . .~ .O ..

1 10 c C, 11c, C*0 0 0 00 c fA' : c a~0C C 0 c o ý o 4 0 0CO

x0 b'C w r_ 4 Io0 1,Nw 1I_
I Q:. -Pýv - ý Iftr , *It '0;.

C .01;f~ fl0C fm3 C c 3lC01~0 0 no ro o C 000loovC C c

-T 'coI o: eco': C
a - " g ;:I-' V . *I. m.P4 Pý . 4.. c 40Q 0 n Zo084,C

o; I?0.0.0,It I 1 I

L'p0-i, Pr 4,I e' me I.
1 Q 5 

1
0 2 .'1 s. I

CF v [ :( I- 'N' ,Ir'7 ~ rcý M 1)~. ;L ~ &- cI.Q -ý II- '
"I~~ ~~ It' :1 1 1,''l 1TT .7 " tI t0 1Q

0 00 7U y I) ,'ý 0Qv )v , tjcc , 0 (7ý Q 1 COC0

E V 8 E' b3 ,1



C. cOD I. CO0

•.I,.

4 U2. 10. . 7 C

I•C O0 0 0 0 M,4
u, w

%L x 4 C N,,*v

0. o C6Y 0 V

Uc LL 00000

0 .-cc cc a.C

CL.€ V.-.V

'I -J 0 0

11t~ • m r

c0 w

I* UC 0

CC! IiL 
a 10 CA0

.. , ', ,,

IA iI b.Iii -~ L
I 21* 019 PtO

L PI

414 Vj.d

737



K

MODEL SC-5, 30 SHALLOW CHUTES, AR 1.7S, FORWARD PLUG

[ 738



S* •* , a - -C 1 -

i -f -H CI

4c a *'*a, c .° 1 N

0 0 0 0 0 0 0 0 0 -4 0,0 N 0,- - -

U. :II II2 -t I1 1, 1
0 04 N~4 • (" o ' b•,ee,, , Jee 4 0 . o€ ,•

C,, c ** c ,d 0 0

C" ot V, 0 0 0 00

0, o., S tAW' "" b . , C froOl 04 - 0 0 c I02 c c~ 0* 0 0

Ic4 0 I 0 9 t 1 usI J{ 4% t 4 rn

1 c::; % c l " 0, V .:

C) 1ý p 4 
1ý 

a' a- P. i 1 ý' 1. 4 0.. 

.

t P. P...• 

. 2 1. :s":1 22Z 2= 
• •

clý 0 1" C ~~ 0 uO l c- 0, e ,at -pt
7001 oug 00o *ý b0t W: 000 N

Cc 1,o " P4 94 .'m 9. IvI SO v m i

-1 0 QC a9 N i - N 1

ve "I,,A . A '#. . Nr p N A f. N%

K U - I L 4vp

1$ 01P0440 ~ 0 #j P4f A0 f

i k 14 wI pIP P IL1 4 @aavi v ~

139 VI

a I



-- "if. eQ0...... P NN P4

w Pv00 0 9 0 0 P0 00,. . N S0 0 9 00 0 o.!0 0 IN I

S*f * w 4* F* . 7 
9 9

% 0 A A f P- f 109

0 :• cc O¢ 000€ 00000 00000 0 €€ , 0 a , a 0 000 o 0 2:g 0 a gm 0 r- 4 a 0 a a• 0 b0 &M 0 r- IN ao ~ 0 10 m

S€ •=)o o¢om eo m om~o oo~o coqc¢oo C CO Q C o acocoo

I I -,I, 0

de N 01N a-~ N.0.0..CCfF. 0l1

000000 0000 0000C 0Co 00c000o

0 0 - #i 14%1 W900000000 q OOoOu oc 00000 O

*9 t * * ,9 *.. . 9 .* . . 9* * * * 9# *

""" ' "0 000 Ci '0 " ' " ': " 91 '. i

cc i ? , 0, C0 T, 0 0 0 0 0 0 0?0 0000 0a 0

IA99u 9 , 0, 49.4o ,N44N0,+04.. v 4 o +o40  ++ +.. , .+ ++

0 11
0. 9 4i 4il09 i19 000000 0 coo

o a 0 ,a- a. C, 0 .0

'l. .. !' ' i i "'' i4 ....I N' ' ' ' 4'0. °0.' 0%I ° I "0' .. .. . 0 l .. .. .;0a

9 9QCC O0C0O 0 0100 0 0

a .0 ,0 % 'M 0, W '.0,00, , as, 4% 0 00VWN2N01 C 9iltt %AANN D00f40
" ..'*',IO p 4 f" 9 N A 1

4', ,-'• , * d• ,, ll,

i 'r Ocj ocr ago' ocr• +"o'oo oc *' •° 0

4A1 -4; 0414 Im~ CIO U.. 04 0 0 04V' a Nl 0 0 a

0V *.e~ I~' . ~ M 4 g 4 P4

2 . 9 0 00cn Q 000 (1 11 10 9 91P. PC70 I NM4 4

99 9t 9.9,e $ e 1 9 9 ti& 9 9 99 t I -t. t "9 "t

31 (30 0 1" 00 u!! I Oc, , S.. -o ot

00 N. in
'Cl 0 ...U P. CI r t , J,0 4A99 -; N J J, N.. Pd N

r-c opp cp.p1N19~
c 0N NoN in9

'IN.~ t IN, r9 N, ~ Pt 4 c U9 , iWf" 0 -

999 99 .i#4  ~ 4 fy #

~1L a 04~ *

cc 90 0 100 008f: -tjO -9 @ - -0 -~ -

I-~~ 44 IV 4 4
2, 01' 

4
B 99

6i 49 0A A0n0lC 1 .F 1 P
a 90 0c Qua c .0U0 0 CU 90 jItt

740



I- W 0i

0,0449 "'s "C'9 4 9

'No e ..0 10 -01 1 01 1 0 T1.4 1 N0 
1 1

N all It ' -0 4

04, ~0 00 0Fg0 4N4 r~ NC

0 C 09 *9. ~ 4 44 4 4 04 99 c. a4 4.44.c c ca a cCev l 0101010101t0 c Ocpý e a,] a 010 10101 a0 C

t4lC V4I.0 aOI4.F FG.04 C40F c0 G. P. , I U.

eC' 
9 J9  

9ý, 4 9 
J 0]0] v. c .J 1 4jw vc0Cv U.1 0 .]00

~ J N Pa-4 45 .1f t , .411a 1
I,. P.- mt M 0 10 V 8 c 111 0 11A

0.40 8'o 40 u~rv 9 G49

P . W . 0 -p f C. N, 0 -apo P l 0 c U1:i A1 tyN ]i f.N % N0. t
Q~4 V% ý O Ct 60

f ,- oft FN4. .4,4 4m d N N *4 No 4f NOMFA~ q ~ j.4 . N 1 P4 PN . W.d 0I 
14 N N I C

A~~'94 A4 v m4.4 f 4.494 A444 M p' phAA4f f ,o
j l, .1.4 .IA P9 a A P9*%p . EA *AA 4 0 0A # .

0000 130 Oq 0 0000 0000008O 'u c

C;4.I cc: a L 0 u0
40 fl o a C. c1"ca g"0 a ?0 a 0 0 '

4 4A k . If I I- PV9 w~ A w it V

W% 14.Vl a!J@ k" * ot1 o f,1 I, J Vl 9 49 1 * IV

IsIu I u -u a1114 .9

kf V ~ 4 %6 o

742.



""J Ciill '04C ,C l ;C l lc'1
""acOti € 2 : 04 0000 80 o8O C : 00cN9 0 C

L II/ I I | l | I I I I

I& I €4 U'*U ' OC - cc0010 0 0 4 1 0 00 coo000coo00 0 "00,0•0'Q0••0 °
0 0000 0O0oo oqoQC

*.. .. . .
9 

* * 9 .*.

a 0 0 0i 0 0 ' 01 0 q 0C 0

cc~ ~ ~ ~ a 0 040c .C j

I '1 ? I 0 0C cc 0o co 000 ]0 011 21 010 0"

Cj;~. C; ON N 4J~ 'h. N 1'0 . - 4 .W~ 4 , .
0 C 10 1C0.4c C ggg4 a 0 0 00 clC;4

,'1a C, C",":

,. U .O q U, , 19p,!11OW a- 0 C 4 'R c,' N a'
00 C a'jU N 0U 4 Co4o4 Q.4N a 00'Ui'Ea~?

10 o 0 00 OQO 00 0 00 0 0 0 0

0 l.Ch 00 N 40 ft a t

I U

In W''.ti Ný N '

4A 0 0 U Q.OC 0 a 0 0 a C, 01 01 oi 10, 10 0,

I-

(A .4~u P, W6, 'r ry N. on

..14 P @0-010 at ~ L.2

9l P. * 9 . 11 4*U 949
- ~ ~ ~ ~ C 0. '¶p .: .pNb.'U t va U -0 - NA NP

*l j 4v'.V NN K.L U'9

j 4,

' * • •U9 *..• !Ii l l l U * *4 Il*' Ul U4* 1 9# 9tl l l 999 IiI

S742

Ot O



fm f" K v N fW r Nv
VS~vA' m r. CY NI f 1f. 4t

SI IIj II IIj

, 4 o.( , I

, -0 V'P " ' aI N' - f• NY NI ot . ,tM1 4 14,. %n. 01. f" 9,,,I ' ll 1

onN 04 0. 11 tiNI 41 .4C' a
* A * * ,,

i ",:• .<+ c, ,; c :. c
010 Oc a .4 Q00 00

' l'Q .4 . CC O OQO Q NN0.. - 1 - Ok 4

.. L j . 1i ta, 1" -

0 4o ' 0 
1

a.1 011 . a 4.to0n i0 0 v u N PN P. d
NI a4 QL 0 a c O 0 a a 04G aC0.~ 0, 4;44 cca c Q 0. 4

6 J

'- NO a 00 0a 10. 0cc a 0 c % Q NQ P . ftC N CC- Q fO W.0 N 0 W .acww" 1 0 i . 1-0 old10 141 w 4. ft W

A i f, Ph.. S I S t b

6. At .I .4 .4

If "'1f '7V +"
e i llk f."',I ll lt AI Ii II~ I 4

kV 6 0 0 c o cc a t 0 c

.0~.vVF a~ we' 40 V, aw 4CO"2O

04 at tO C0 CG~o C~ a 0a

55 * 0 c 4 * 11 u 5

J II I

. . ..,g .. 4 ... T

S ~ .1~4 ~~ c~o oo 743.



W% 'a 41 00 9 0. 0 M 00 W 40 0 ~ mm m10  
0c 004 ocinift 1 in

9-"lss wi Ilam cd e D0 0.0
04N 4; 18 .01J;J 8 vN O 4'NU 4 ;

NON. 4-O' -N to 0. 0. -. A. .4 Of 0 0 V%44 IsN V% W% It0 n o
000 aC 900 C!C 00000QcQ qQ ~ 00000 0 00 00 0 0 a0

09 000010 0QO 0000 0- 00 00000C0 a~ Qj 0 L
Q 4q a ooa~ot o 0

0 I 1 li ! i li 9.9! .9 li
N.4 0 CIO 0 ' 0~0 4 0 a0 0 0 P'9.U a 4z; 04

0 C00000 000 00004000000 000009 00000
N? *** *; * Coo cc '* 4,* .4 ** *1*9 ;9 1 *

ItOO a l %A' 00 0y a 0 i9 00 0e00 0 04

ON MA M NNf N m 0N4. 0P.9 N00 a N! wN4 0 a- 4N V4 Q
9 ., 9 9* . OCCsM4 cc 9** a

~000 090 000010 i0000 00000 a00 C100 000

00090oo 0~0084 caca o 000 .0000 o0o onoc ii Jo
t0 o 000400000Q 000 00000 00000000 00000 0C~o 0

0 10 0 0 . 0 '1 0. 0 "

C~~~ Ib~ I N 4 4

.~ ~~~~ 494 N." 0. -04 L-4 cr-00~

g4 4 11~h O o O 009 *1'O'N It V It ONN v4 A. NO QN " 94
9NN a a ~lN~ 0 py4 0t P4N 0 44

69 1 9 9. U, . 9 9 9910 11. 9 * 9 9. , .9 a*

004 Q

5.99 p.1 fC. 00 T I@ v %9 1- 04.4N 9N~~ '4 a-f %0ar 04 1 ,OtW I
11 -A 0 4K0 1- .411. 0 ~ 4 v 410 N 0 94 -440090 - 0 ".'' 9440i tJt. ",C~ 11, 1,

at N094 Nýt'0V 00.4 v1)@ N 00' 44 0 44

N: 9NM N A N .. ag . ?4E- fvI t9 Q4 -. - p N rw
V(% c- v N4O V% hp V - p.

N4 ft 0r- ~,4v u 1 ,1 Z ,ý731 f iN %, vOvPa wkf m 0U,0 q; f V4 a Ift q 09 0 ýI

PA fPola ILIA,4 G 0 4.0 Uog 0, 0'.
.94 * 0 6 40 1 40 0 .4 0 4 a4.A ,

N o ' 0- Coe 000 0 .0 01 04 4~ 4 ;1 a~

a^ J IC 4 a j C Ia, *0i
F, 'Cý0 aC 'C aC

0 'C

6 4t .1 .i : d, W 4 4
ft 9%9N~ t9, 0 Y.

16 r l- I "t4ý74t

14 41 6Z 3



nlI-I *o ,0,- N

"Il'. .. 4. 4 °"b, ,

,el II

.I4j 

S I

cc 
010 °d*

tiu 0

,0~ ,t a . ,,, , U.,,

0-a a ,*p

F,/:l - -0 ... I "0
oft 6 i 9 4

.4. P 1. .. ..... a..

000010 0

01 000000a -0
a c

9,4 Li-c° 0 (p Q ' V, Of

L4 .J 1 f

"Ii .wP .,h

'o No 11 in f
L1 .~P. . 0 %P of#AO

a- I I ?019
a 1 11-10 tmy P-0% If 4140

14C .4 91

.. i -, 0,C. S.
F ~ ~ ~ 1I A 4 .in4 e m.

.0 ~ , 0.* 40 Pftf

jI 4k %, 41Q 0 p4I Ial 1
7...., I

4~ .w~g I44s,1111W 04 r¶ 14, t
.1.4 4 41 * 4#0~O4~

OI I t u% 0, St

745



I

I MODEL SC-6, 40 SHALLOW CHUTES, AR " 1.75, BASELINE PLUG

746



- .- 4- 0. -.. O i N-'4g -. . .~.......

IL~
"o~ 0~2. Ice''-e

%I w4E Q -@~*
IL~

'A. . -'

7.A. 44 . .. C.*,*s 0, 01. a c' 1; 4 ; *. 0, * * . 4 4s

04 0
t 4~4 ci .0 *% St 4. ,. w4 .4 4 4 ft le

u a 0~ aooal, t a o a

- 0 cR zgxt40000* o o

44 'i Zj ".t e
- 40 1 '

** 444 440* 44 s .*k4* 4 4

41, * 11 t0. -.. 
4 
. ~ S *, ý .

4t

q 0"744

* ~4-4m*-***S' . . .



Z.in. cc o 0, c cc - il Cý - 00 C ý 0 . 0' c c C O w 0000 00_ P c t. tCC 0_ 1, 0000 f. C,

C i a n,m 0, in a n in <, LI o, - w i a. m te an in r. wn a i P- £0 a I, - M, 0 a- n Mn Mn in w P_ in

.. OOccO0 C0-O 00 00Ct,,00COc0.00000000000CO0000

1x -9 0 00000000 C00 C Jcle000N0 -"0
0.

U, x 0 1t I I I ill Min lt III

r, Nf~r, Me, 000000C0000 " C 0 00000 ,,e

cI *ýoo o O'c 0l~o~ 0 00 C 1evO c, 0 .C.II . III. hn .l .~ .l .jI .nninn .n~nihni 00 9 1c.
8 ~ 0 '' IleC CO (.,ICOCU 0 C.0eje 0 0 IA

4.C~?It N r- co'ooIf icvN]] t tc ' P ViLo~~ :io3 N -:Coo -IN C~~~ o C00 00

a., 8 0lC. 0 c 0a ri0919024000

z- 0 ft cjQc o C 0COC
.N04.ItI?''f c CNN .N N -M c'. ..

c!C ..N -I

f,4 4 .0 000008 00 C C 0 Q C !8(.O.~ i;, r.C.0CC ".c;0,0(iC~. I4.n n

0 0 C * 0 L- Ci 0

c N -. GQDP ~

I: a N -nU, C V NNIN

o I I I ti
in.~ Nj~NdI pV67P'N

IV .

I 1 ,,i. O0Ci0 C' I -,zI-I - "

M`. "AVwChintU tIJ Ica in'* P.~ n? & ~nt in`1 60 vIJu I., , a VDF4 I% ~Vw
Z* 1V . 1,17 , v4 Q Y 'r ,I

4i~iv 1 0 0 in '

N,_7 NO: r t

4p. "'N n r ý N~ f a a 1- 0 A1--t-~~~~ CI 0'SfC;c _ccs
0 1 (1J , , ,i 1 ' I i 1r C* ,a a4

4N~ ~ ~ ~ . 4. inTAIVVI fv .fw Wi



Z... - - --. - 0 -- ~ -. -

It- COPC'. 04VF.CQ.0 ý m~4~O mu mo %

4. ~~~CI 4-.S 
c-U 

V'NIN C~Q

a 4~~ .. 4. * 9 .ý484;4.., . I

W-0,0 m11- ý e 0d~~ -- ~ - 4. W ýf Z t0

t-l 4.0,,'sl U1 1" c N t0 w0a ,0r 'PQ -C1 a 0c .ag P ,a
.0 . .t *

4 
t .4 S. .. .- * .r .rn .p .

4u 0 c .'eI ~ I ! I i cI t. N faP9 rn

w I'1 C I L
: 0 1- I '4 J pI '

V.U4 1. Q " WV .0 J ~ ,U

'. IV o L
Ir~~~ 0 4



00 N'Nmm) C0oll 0

~C CO00C.0C0C0000eC00c-c ccCljcc COccctOOc c 00

U .
4W. 0

c u~~0cC00ccc a 1coo,0~ ~ 000CCOOOOcOC C

0.))) .N4CMN~ t4 t. 4
.. CCOCOOCO~ OOOCI( C O O O 000 o 00c0CO00' 04r

ILC) " 4ýCO(.OC O
1
0,.c,0 00, c . . . . .

IW I~ I, I- l ei

Ic~f Ic I . ' i . I0 NO~ IF 00.0

co U. .. ... 1.,.--C

'i~' *9 9 C C0

'i C, I I

10.. A. -3: 40a nA

-II , * ' . I . I . I) , I , 4

4.-.Nt L O.m 4 '10 pNN4. 0,10, . kfP.

".4 W. e. ItNI N DI
=0-

. I 1 ýC lý91. . 1

vcq !aQ70C C 'No C *



U. ~ '0 Wt..N~I 0 ,0V4.400= N4 NNN*4P-.~ MON-~

- -- - ~- - - --- - -- - - * - - - 4*

ftM 4 f- 0 -4 10 qO-ýý0 0 0o0 0,M N40000.- om t. mm61 oý-00p WO Foe'ee 't 4wo
U Nj : N 9- m4 *4 NO W In in *4 w4 o..4=wa1ý QL

U .. C .C . .o C .4 P ' e ~ ~ a o w~
LL 0 - - - - Ccocoa Oon 0~o Q~c 0CCcIo~oc.

)400 a .? nwý 4 1 *** 0, a, inN

0* C C CIO a 0 00m 0

C' P. a 0C am1m~
* L eI.'.4 ' P-0o c C ~ c o N .. c ~ ~ .Qd'llr0c - 'cNl41 0 a c

1, iim a,071 1, Ow 40I l . 0aI
06. n .04V%4 0 4Nf~ MNN1.4...-4 N

"C, o, COI 0 or o I . to 'r'f V
cl -- CS,' ".1 w

M' -] a I 
Ity ft, 'A 10L fp0J~0  0v r1 0 N fýC

C, !-Q' N MN m~ 1. C~ 4mr; NN c
0. . 0ýW 0 1 0 0I, ý o; 1 XN

of l f-r N.Nf l.M I' *4NI 11,*1 . IN1' on, 1 NTT 1 7'1 V 7 Ni714
a65

'4a
99 Cc 4 10 9 4 44..



IS1 4ftZf n W1 DWt F caP.f ý 0-0wa0 MM9-. m1
ft N 4 'C00 qa NNN&- -1 I0W I -COgmmm ~ c

P:%P:p" . 0 'm' a c 4Cw P. .- P %P

;: - 00000c 0 a0 ;00 G 0 0000 0 00 CC C ;;r* C C ; 8C ; 8c , 3C;C , 0 00 00a

UC U-f .9 **99 9 * 9 9 *

&L I: NN 0 -0 -ý G C.t-- %C.' NC0-'4%C9 .

2.* OCCO0000C C0C~CCO (0CC0 C OC.CC c oC(COCcCC0(,

-a ~ ~ ~ ~ CC C 01 v . ccC Cc00 N~ C CC 0000000000

N. .cc CC 0. -.. O-t a~. 0~r- Ct,
0,00001CC~~~ a1C CCLCCI~ j.

~19%ili . 09,100 .9cCC; VICe,01  Cý 1

'A 0CC 0 OCO COCCC00. 00 CNO00.
C c 000104% nc c %0000

0. 1 
% I nlJcoJcV .I;N~ 

W

Vj " in ~ ~ i Ni f't 4 V. ". Z 0 4, Ic ' 1. & t V t 4 't 9 t 't in -1,7

CC 0. C 0 C I1 ej Leoov'oaeo'a~c e C40 C C c 0Nt I' o COO4g~~

r g 0 00 1C O COC;jO C;

CO~~ "a.N.J' C * .*0Ote .f 'Coo, 4ý;ý -. t'0" 8 0 8 C; IIf

Z u C .sx u P.91 ZV CI f0lee0-rg('C.0 1..dCCg-

4:11 a, * a 0 C *9*-o no0 : 9. . ... 9.191.t .999 Co 99,9c coca .

t I:.#1 1! 1 12 1 t I I IJN f, f9~ 9 ~ 1 ~ I~ Ic

ak C V> 0 ,j 0 ]N IC c 011 1 C,1" 4 N W 9 got

U` .t 
ttt

C. J* OI CJ O@ 0 0,' 8 c Q cc~cý OC l

".1 CIO ~ 9 C;l~t9 jel~~P a 4 q I4..44.e

f ~~~~l 1. C.::L CAnofCF9010!

Q* C C 4, C C. 41 - -9 % 1 ,

0 Cl H: "' 1l 1 77" *1 V 1
111 1. 1I r fv ,C ' 0 ý V ' -t ZI

!OPO 752 Q r oC

1: 0. M C N941. S



o4 W,- .C0 P- s, n t 000

CA 0 0 C 0 0 c

a~~~% M.00-Ne~. 0. 0 0 Is; N 4.

oe~ .4 ZIII A1 i0 0N - C-00CAC) Ll. 4.1-149-0 000W0
& ~- 0 C~ - 0 UOC'00 0000

lit X 6010I0000
w. C: -- - a c0oo

-. Op. ?

> L00 0 a0,0 0 0 0n

U) C.
41. Cq r 4 .. ?40a 0cc o .4

10 Ic to en -

C00000,00

.. 40 1 0' 44#f.0 N~ ~ m "4 IW'. a
a' _j4 4.4' 4.u, Il ~ I 4 4 C44u
CL44~ '4 %l , 0 4 f 4 . I

!iIi Q. CC44 4.4 44ith W 404 C4. W .4 a A

C:a0 ..-. 04f4 0 -

4 441- 46 N INi Ifl N f
4L 1 1. o &4-.4 4OC. C'~ C 'N Mili Wp 

l 'l464
IN ON - 14 A~ A A A-

1 i -It . ,1 &C O~OC Ov

r l t4ý .0llW4IMO11.,v

It~~ ItI -.4.0. - -4 ~ ~ 'mF ~ Eau.uI.,

"I. a -
1  

i 1 
mi n

IL7I3

VI W



MODEL DC-1, 36 DEEP CHUTES, AR = 1.5, BASELINE PLUG
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MODEL DC-3, 36 DEEP CHUTES, AR 2.0, BASELINE PLUG
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